Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   GIF version

Theorem psshepw 38082
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw [] hereditary 𝒫 𝐴

Proof of Theorem psshepw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 38069 . 2 ( [] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴)))
2 sstr2 3610 . . . . 5 (𝑦𝑥 → (𝑥𝐴𝑦𝐴))
3 pssss 3702 . . . . 5 (𝑦𝑥𝑦𝑥)
42, 3syl11 33 . . . 4 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
54alrimiv 1855 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐴))
6 selpw 4165 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 vex 3203 . . . . . . 7 𝑥 ∈ V
8 vex 3203 . . . . . . 7 𝑦 ∈ V
97, 8brcnv 5305 . . . . . 6 (𝑥 [] 𝑦𝑦 [] 𝑥)
107brrpss 6940 . . . . . 6 (𝑦 [] 𝑥𝑦𝑥)
119, 10bitri 264 . . . . 5 (𝑥 [] 𝑦𝑦𝑥)
12 selpw 4165 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1311, 12imbi12i 340 . . . 4 ((𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ (𝑦𝑥𝑦𝐴))
1413albii 1747 . . 3 (∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
155, 6, 143imtr4i 281 . 2 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴))
161, 15mpgbir 1726 1 [] hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wcel 1990  wss 3574  wpss 3575  𝒫 cpw 4158   class class class wbr 4653  ccnv 5113   [] crpss 6936   hereditary whe 38066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-rpss 6937  df-he 38067
This theorem is referenced by:  sshepw  38083
  Copyright terms: Public domain W3C validator