Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   Unicode version

Theorem psshepw 38082
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw  |-  `' [ C.] hereditary  ~P A

Proof of Theorem psshepw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 38069 . 2  |-  ( `' [ C.] hereditary 
~P A  <->  A. x
( x  e.  ~P A  ->  A. y ( x `' [ C.]  y  ->  y  e.  ~P A ) ) )
2 sstr2 3610 . . . . 5  |-  ( y 
C_  x  ->  (
x  C_  A  ->  y 
C_  A ) )
3 pssss 3702 . . . . 5  |-  ( y 
C.  x  ->  y  C_  x )
42, 3syl11 33 . . . 4  |-  ( x 
C_  A  ->  (
y  C.  x  ->  y 
C_  A ) )
54alrimiv 1855 . . 3  |-  ( x 
C_  A  ->  A. y
( y  C.  x  ->  y  C_  A )
)
6 selpw 4165 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
7 vex 3203 . . . . . . 7  |-  x  e. 
_V
8 vex 3203 . . . . . . 7  |-  y  e. 
_V
97, 8brcnv 5305 . . . . . 6  |-  ( x `' [ C.]  y  <->  y [ C.]  x
)
107brrpss 6940 . . . . . 6  |-  ( y [ C.]  x  <->  y  C.  x
)
119, 10bitri 264 . . . . 5  |-  ( x `' [ C.]  y  <->  y  C.  x
)
12 selpw 4165 . . . . 5  |-  ( y  e.  ~P A  <->  y  C_  A )
1311, 12imbi12i 340 . . . 4  |-  ( ( x `' [ C.]  y  ->  y  e.  ~P A
)  <->  ( y  C.  x  ->  y  C_  A
) )
1413albii 1747 . . 3  |-  ( A. y ( x `' [ C.]  y  ->  y  e. 
~P A )  <->  A. y
( y  C.  x  ->  y  C_  A )
)
155, 6, 143imtr4i 281 . 2  |-  ( x  e.  ~P A  ->  A. y ( x `' [ C.]  y  ->  y  e. 
~P A ) )
161, 15mpgbir 1726 1  |-  `' [ C.] hereditary  ~P A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    e. wcel 1990    C_ wss 3574    C. wpss 3575   ~Pcpw 4158   class class class wbr 4653   `'ccnv 5113   [ C.] crpss 6936   hereditary whe 38066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-rpss 6937  df-he 38067
This theorem is referenced by:  sshepw  38083
  Copyright terms: Public domain W3C validator