![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 3702 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3574 ⊊ wpss 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-pss 3590 |
This theorem is referenced by: fin23lem36 9170 fin23lem39 9172 canthnumlem 9470 canthp1lem2 9475 elprnq 9813 npomex 9818 prlem934 9855 ltexprlem7 9864 wuncn 9991 mrieqv2d 16299 slwpss 18027 pgpfac1lem5 18478 lbspss 19082 lsppratlem1 19147 lsppratlem3 19149 lsppratlem4 19150 lrelat 34301 lsatcvatlem 34336 |
Copyright terms: Public domain | W3C validator |