Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvatlem Structured version   Visualization version   GIF version

Theorem lsatcvatlem 34336
Description: Lemma for lsatcvat 34337. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
lsatcvat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lsatcvatlem (𝜑𝑈𝐴)

Proof of Theorem lsatcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lsatcvat.o . . 3 0 = (0g𝑊)
3 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
5 lveclmod 19106 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . 3 (𝜑𝑊 ∈ LMod)
7 lsatcvat.u . . 3 (𝜑𝑈𝑆)
8 lsatcvat.n . . 3 (𝜑𝑈 ≠ { 0 })
91, 2, 3, 6, 7, 8lssatomic 34298 . 2 (𝜑 → ∃𝑥𝐴 𝑥𝑈)
10 eqid 2622 . . . . 5 ( ⋖L𝑊) = ( ⋖L𝑊)
1143ad2ant1 1082 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LVec)
1263ad2ant1 1082 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LMod)
13 simp2 1062 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝐴)
141, 3, 12, 13lsatlssel 34284 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑆)
15 lsatcvat.q . . . . . . . 8 (𝜑𝑄𝐴)
161, 3, 6, 15lsatlssel 34284 . . . . . . 7 (𝜑𝑄𝑆)
17163ad2ant1 1082 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝑆)
18 lsatcvat.p . . . . . . 7 = (LSSum‘𝑊)
191, 18lsmcl 19083 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑥𝑆) → (𝑄 𝑥) ∈ 𝑆)
2012, 17, 14, 19syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ 𝑆)
2173ad2ant1 1082 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝑆)
22 lsatcvat.m . . . . . . . . . 10 (𝜑 → ¬ 𝑄𝑈)
23223ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → ¬ 𝑄𝑈)
24 sseq1 3626 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (𝑥𝑈𝑄𝑈))
2524biimpcd 239 . . . . . . . . . . 11 (𝑥𝑈 → (𝑥 = 𝑄𝑄𝑈))
2625necon3bd 2808 . . . . . . . . . 10 (𝑥𝑈 → (¬ 𝑄𝑈𝑥𝑄))
27263ad2ant3 1084 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → (¬ 𝑄𝑈𝑥𝑄))
2823, 27mpd 15 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑄)
29153ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝐴)
302, 3, 11, 13, 29lsatnem0 34332 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄 ↔ (𝑥𝑄) = { 0 }))
3128, 30mpbid 222 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄) = { 0 })
321, 18, 2, 3, 10, 11, 14, 29lcvp 34327 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑥𝑄) = { 0 } ↔ 𝑥( ⋖L𝑊)(𝑥 𝑄)))
3331, 32mpbid 222 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑥 𝑄))
34 lmodabl 18910 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3512, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ Abel)
361lsssssubg 18958 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
3712, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑆 ⊆ (SubGrp‘𝑊))
3837, 14sseldd 3604 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ∈ (SubGrp‘𝑊))
3937, 17sseldd 3604 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ∈ (SubGrp‘𝑊))
4018lsmcom 18261 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑥 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → (𝑥 𝑄) = (𝑄 𝑥))
4135, 38, 39, 40syl3anc 1326 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥 𝑄) = (𝑄 𝑥))
4233, 41breqtrd 4679 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑄 𝑥))
43 simp3 1063 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑈)
44 lsatcvat.l . . . . . . 7 (𝜑𝑈 ⊊ (𝑄 𝑅))
45443ad2ant1 1082 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑅))
4618lsmub1 18071 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (SubGrp‘𝑊)) → 𝑄 ⊆ (𝑄 𝑥))
4739, 38, 46syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ⊆ (𝑄 𝑥))
48 lsatcvat.r . . . . . . . . 9 (𝜑𝑅𝐴)
49483ad2ant1 1082 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝐴)
5044pssssd 3704 . . . . . . . . . 10 (𝜑𝑈 ⊆ (𝑄 𝑅))
51503ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊆ (𝑄 𝑅))
5243, 51sstrd 3613 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ⊆ (𝑄 𝑅))
5318, 3, 11, 13, 49, 29, 52, 28lsatexch1 34333 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ⊆ (𝑄 𝑥))
541, 3, 6, 48lsatlssel 34284 . . . . . . . . . 10 (𝜑𝑅𝑆)
55543ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝑆)
5637, 55sseldd 3604 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ∈ (SubGrp‘𝑊))
5737, 20sseldd 3604 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ (SubGrp‘𝑊))
5818lsmlub 18078 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑥) ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
5939, 56, 57, 58syl3anc 1326 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
6047, 53, 59mpbi2and 956 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑅) ⊆ (𝑄 𝑥))
6145, 60psssstrd 3716 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑥))
621, 10, 11, 14, 20, 21, 42, 43, 61lcvnbtwn3 34315 . . . 4 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 = 𝑥)
6362, 13eqeltrd 2701 . . 3 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝐴)
6463rexlimdv3a 3033 . 2 (𝜑 → (∃𝑥𝐴 𝑥𝑈𝑈𝐴))
659, 64mpd 15 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cin 3573  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  0gc0g 16100  SubGrpcsubg 17588  LSSumclsm 18049  Abelcabl 18194  LModclmod 18863  LSubSpclss 18932  LVecclvec 19102  LSAtomsclsa 34261  L clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lcv 34306
This theorem is referenced by:  lsatcvat  34337
  Copyright terms: Public domain W3C validator