MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Visualization version   GIF version

Theorem pgpfac1lem5 18478
Description: Lemma for pgpfac1 18479. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.3 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
Assertion
Ref Expression
pgpfac1lem5 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡,𝑠, 0   𝐴,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝐵,𝑠,𝑡   𝐺,𝑠,𝑡   𝑈,𝑠,𝑡   𝑆,𝑠,𝑡   𝜑,𝑠,𝑡   𝐾,𝑠,𝑡
Allowed substitution hints:   𝐸(𝑡,𝑠)   𝑂(𝑡,𝑠)

Proof of Theorem pgpfac1lem5
Dummy variables 𝑏 𝑢 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
2 pwfi 8261 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ 𝒫 𝐵 ∈ Fin)
31, 2sylib 208 . . . . . . . . 9 (𝜑 → 𝒫 𝐵 ∈ Fin)
43adantr 481 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝒫 𝐵 ∈ Fin)
5 pgpfac1.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
65subgss 17595 . . . . . . . . . . 11 (𝑣 ∈ (SubGrp‘𝐺) → 𝑣𝐵)
763ad2ant2 1083 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣𝐵)
8 selpw 4165 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝐵𝑣𝐵)
97, 8sylibr 224 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ 𝑣 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑈𝐴𝑣)) → 𝑣 ∈ 𝒫 𝐵)
109rabssdv 3682 . . . . . . . 8 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵)
11 ssfi 8180 . . . . . . . 8 ((𝒫 𝐵 ∈ Fin ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ⊆ 𝒫 𝐵) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
124, 10, 11syl2anc 693 . . . . . . 7 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
13 finnum 8774 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
1412, 13syl 17 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card)
15 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
16 pgpfac1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
17 ablgrp 18198 . . . . . . . . . . . . 13 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1816, 17syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Grp)
195subgacs 17629 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
20 acsmre 16313 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
22 pgpfac1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubGrp‘𝐺))
235subgss 17595 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2422, 23syl 17 . . . . . . . . . . . 12 (𝜑𝑈𝐵)
25 pgpfac1.au . . . . . . . . . . . 12 (𝜑𝐴𝑈)
2624, 25sseldd 3604 . . . . . . . . . . 11 (𝜑𝐴𝐵)
27 pgpfac1.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
2827mrcsncl 16272 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2921, 26, 28syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3015, 29syl5eqel 2705 . . . . . . . . 9 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3130adantr 481 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
32 simpr 477 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆𝑈)
3325snssd 4340 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ⊆ 𝑈)
3433, 24sstrd 3613 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
3521, 27, 34mrcssidd 16285 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
3635, 15syl6sseqr 3652 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
37 snssg 4327 . . . . . . . . . . 11 (𝐴𝐵 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3826, 37syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
3936, 38mpbird 247 . . . . . . . . 9 (𝜑𝐴𝑆)
4039adantr 481 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝐴𝑆)
41 psseq1 3694 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝑣𝑈𝑆𝑈))
42 eleq2 2690 . . . . . . . . . 10 (𝑣 = 𝑆 → (𝐴𝑣𝐴𝑆))
4341, 42anbi12d 747 . . . . . . . . 9 (𝑣 = 𝑆 → ((𝑣𝑈𝐴𝑣) ↔ (𝑆𝑈𝐴𝑆)))
4443rspcev 3309 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑈𝐴𝑆)) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4531, 32, 40, 44syl12anc 1324 . . . . . . 7 ((𝜑𝑆𝑈) → ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
46 rabn0 3958 . . . . . . 7 ({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ (SubGrp‘𝐺)(𝑣𝑈𝐴𝑣))
4745, 46sylibr 224 . . . . . 6 ((𝜑𝑆𝑈) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅)
48 simpr1 1067 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
49 simpr2 1068 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ≠ ∅)
5012adantr 481 . . . . . . . . . . 11 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin)
51 ssfi 8180 . . . . . . . . . . 11 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ Fin ∧ 𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → 𝑢 ∈ Fin)
5250, 48, 51syl2anc 693 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ Fin)
53 simpr3 1069 . . . . . . . . . 10 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → [] Or 𝑢)
54 fin1a2lem10 9231 . . . . . . . . . 10 ((𝑢 ≠ ∅ ∧ 𝑢 ∈ Fin ∧ [] Or 𝑢) → 𝑢𝑢)
5549, 52, 53, 54syl3anc 1326 . . . . . . . . 9 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢𝑢)
5648, 55sseldd 3604 . . . . . . . 8 (((𝜑𝑆𝑈) ∧ (𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢)) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})
5756ex 450 . . . . . . 7 ((𝜑𝑆𝑈) → ((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
5857alrimiv 1855 . . . . . 6 ((𝜑𝑆𝑈) → ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}))
59 zornn0g 9327 . . . . . 6 (({𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∈ dom card ∧ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ≠ ∅ ∧ ∀𝑢((𝑢 ⊆ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ∧ 𝑢 ≠ ∅ ∧ [] Or 𝑢) → 𝑢 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)})) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
6014, 47, 58, 59syl3anc 1326 . . . . 5 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤)
61 psseq1 3694 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑈𝑤𝑈))
62 eleq2 2690 . . . . . . . 8 (𝑣 = 𝑤 → (𝐴𝑣𝐴𝑤))
6361, 62anbi12d 747 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑈𝐴𝑣) ↔ (𝑤𝑈𝐴𝑤)))
6463ralrab 3368 . . . . . 6 (∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6564rexbii 3041 . . . . 5 (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ¬ 𝑠𝑤 ↔ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6660, 65sylib 208 . . . 4 ((𝜑𝑆𝑈) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
6766ex 450 . . 3 (𝜑 → (𝑆𝑈 → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
68 pgpfac1.3 . . . . 5 (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
69 psseq1 3694 . . . . . . 7 (𝑣 = 𝑠 → (𝑣𝑈𝑠𝑈))
70 eleq2 2690 . . . . . . 7 (𝑣 = 𝑠 → (𝐴𝑣𝐴𝑠))
7169, 70anbi12d 747 . . . . . 6 (𝑣 = 𝑠 → ((𝑣𝑈𝐴𝑣) ↔ (𝑠𝑈𝐴𝑠)))
7271ralrab 3368 . . . . 5 (∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
7368, 72sylibr 224 . . . 4 (𝜑 → ∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))
74 r19.29 3072 . . . . 5 ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
7571elrab 3363 . . . . . . 7 (𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} ↔ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠)))
76 ineq2 3808 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆𝑡) = (𝑆𝑣))
7776eqeq1d 2624 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆𝑡) = { 0 } ↔ (𝑆𝑣) = { 0 }))
78 oveq2 6658 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (𝑆 𝑡) = (𝑆 𝑣))
7978eqeq1d 2624 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑣) = 𝑠))
8077, 79anbi12d 747 . . . . . . . . . 10 (𝑡 = 𝑣 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠)))
8180cbvrexv 3172 . . . . . . . . 9 (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠))
82 simprrl 804 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → 𝑠𝑈)
8382ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → 𝑠𝑈)
84 simpr2 1068 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) = 𝑠)
8584psseq1d 3699 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ((𝑆 𝑣) ⊊ 𝑈𝑠𝑈))
8683, 85mpbird 247 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑆 𝑣) ⊊ 𝑈)
87 pssdif 3945 . . . . . . . . . . . . . . 15 ((𝑆 𝑣) ⊊ 𝑈 → (𝑈 ∖ (𝑆 𝑣)) ≠ ∅)
88 n0 3931 . . . . . . . . . . . . . . 15 ((𝑈 ∖ (𝑆 𝑣)) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
8987, 88sylib 208 . . . . . . . . . . . . . 14 ((𝑆 𝑣) ⊊ 𝑈 → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
9086, 89syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
91 pgpfac1.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
92 pgpfac1.e . . . . . . . . . . . . . . . 16 𝐸 = (gEx‘𝐺)
93 pgpfac1.z . . . . . . . . . . . . . . . 16 0 = (0g𝐺)
94 pgpfac1.l . . . . . . . . . . . . . . . 16 = (LSSum‘𝐺)
95 pgpfac1.p . . . . . . . . . . . . . . . . 17 (𝜑𝑃 pGrp 𝐺)
9695ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑃 pGrp 𝐺)
9716ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐺 ∈ Abel)
981ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐵 ∈ Fin)
99 pgpfac1.oe . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂𝐴) = 𝐸)
10099ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑂𝐴) = 𝐸)
10122ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑈 ∈ (SubGrp‘𝐺))
10225ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝐴𝑈)
103 simplr 792 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑣 ∈ (SubGrp‘𝐺))
104 simprl1 1106 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆𝑣) = { 0 })
10586adantrr 753 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊊ 𝑈)
106105pssssd 3704 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) ⊆ 𝑈)
107 simprl3 1108 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
10884adantrr 753 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (𝑆 𝑣) = 𝑠)
109 psseq1 3694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 𝑣) = 𝑠 → ((𝑆 𝑣) ⊊ 𝑦𝑠𝑦))
110109notbid 308 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 𝑣) = 𝑠 → (¬ (𝑆 𝑣) ⊊ 𝑦 ↔ ¬ 𝑠𝑦))
111110imbi2d 330 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 𝑣) = 𝑠 → (((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
112111ralbidv 2986 . . . . . . . . . . . . . . . . . . 19 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦)))
113 psseq1 3694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑦𝑈𝑤𝑈))
114 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
115113, 114anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑦𝑈𝐴𝑦) ↔ (𝑤𝑈𝐴𝑤)))
116 psseq2 3695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑤 → (𝑠𝑦𝑠𝑤))
117116notbid 308 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (¬ 𝑠𝑦 ↔ ¬ 𝑠𝑤))
118115, 117imbi12d 334 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
119118cbvralv 3171 . . . . . . . . . . . . . . . . . . 19 (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ 𝑠𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))
120112, 119syl6bb 276 . . . . . . . . . . . . . . . . . 18 ((𝑆 𝑣) = 𝑠 → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
121108, 120syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → (∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦) ↔ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)))
122107, 121mpbird 247 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∀𝑦 ∈ (SubGrp‘𝐺)((𝑦𝑈𝐴𝑦) → ¬ (𝑆 𝑣) ⊊ 𝑦))
123 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))
124 eqid 2622 . . . . . . . . . . . . . . . 16 (.g𝐺) = (.g𝐺)
12527, 15, 5, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 122, 123, 124pgpfac1lem4 18477 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) ∧ 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
126125expr 643 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
127126exlimdv 1861 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → (∃𝑏 𝑏 ∈ (𝑈 ∖ (𝑆 𝑣)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
12890, 127mpd 15 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) ∧ ((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠 ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
1291283exp2 1285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → ((𝑆𝑣) = { 0 } → ((𝑆 𝑣) = 𝑠 → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))))
130129impd 447 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) ∧ 𝑣 ∈ (SubGrp‘𝐺)) → (((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
131130rexlimdva 3031 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑣 ∈ (SubGrp‘𝐺)((𝑆𝑣) = { 0 } ∧ (𝑆 𝑣) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
13281, 131syl5bi 232 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))))
133132impd 447 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (𝑠𝑈𝐴𝑠))) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13475, 133sylan2b 492 . . . . . 6 ((𝜑𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}) → ((∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
135134rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)} (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13674, 135syl5 34 . . . 4 (𝜑 → ((∀𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ∧ ∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13773, 136mpand 711 . . 3 (𝜑 → (∃𝑠 ∈ {𝑣 ∈ (SubGrp‘𝐺) ∣ (𝑣𝑈𝐴𝑣)}∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ 𝑠𝑤) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
13867, 137syld 47 . 2 (𝜑 → (𝑆𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
139930subg 17619 . . . . . 6 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
14018, 139syl 17 . . . . 5 (𝜑 → { 0 } ∈ (SubGrp‘𝐺))
141140adantr 481 . . . 4 ((𝜑𝑆 = 𝑈) → { 0 } ∈ (SubGrp‘𝐺))
14293subg0cl 17602 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
14330, 142syl 17 . . . . . . 7 (𝜑0𝑆)
144143snssd 4340 . . . . . 6 (𝜑 → { 0 } ⊆ 𝑆)
145144adantr 481 . . . . 5 ((𝜑𝑆 = 𝑈) → { 0 } ⊆ 𝑆)
146 sseqin2 3817 . . . . 5 ({ 0 } ⊆ 𝑆 ↔ (𝑆 ∩ { 0 }) = { 0 })
147145, 146sylib 208 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 ∩ { 0 }) = { 0 })
14894lsmss2 18081 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ { 0 } ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑆) → (𝑆 { 0 }) = 𝑆)
14930, 140, 144, 148syl3anc 1326 . . . . . 6 (𝜑 → (𝑆 { 0 }) = 𝑆)
150149eqeq1d 2624 . . . . 5 (𝜑 → ((𝑆 { 0 }) = 𝑈𝑆 = 𝑈))
151150biimpar 502 . . . 4 ((𝜑𝑆 = 𝑈) → (𝑆 { 0 }) = 𝑈)
152 ineq2 3808 . . . . . . 7 (𝑡 = { 0 } → (𝑆𝑡) = (𝑆 ∩ { 0 }))
153152eqeq1d 2624 . . . . . 6 (𝑡 = { 0 } → ((𝑆𝑡) = { 0 } ↔ (𝑆 ∩ { 0 }) = { 0 }))
154 oveq2 6658 . . . . . . 7 (𝑡 = { 0 } → (𝑆 𝑡) = (𝑆 { 0 }))
155154eqeq1d 2624 . . . . . 6 (𝑡 = { 0 } → ((𝑆 𝑡) = 𝑈 ↔ (𝑆 { 0 }) = 𝑈))
156153, 155anbi12d 747 . . . . 5 (𝑡 = { 0 } → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈) ↔ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)))
157156rspcev 3309 . . . 4 (({ 0 } ∈ (SubGrp‘𝐺) ∧ ((𝑆 ∩ { 0 }) = { 0 } ∧ (𝑆 { 0 }) = 𝑈)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
158141, 147, 151, 157syl12anc 1324 . . 3 ((𝜑𝑆 = 𝑈) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
159158ex 450 . 2 (𝜑 → (𝑆 = 𝑈 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈)))
16027mrcsscl 16280 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐴} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐴}) ⊆ 𝑈)
16121, 33, 22, 160syl3anc 1326 . . . 4 (𝜑 → (𝐾‘{𝐴}) ⊆ 𝑈)
16215, 161syl5eqss 3649 . . 3 (𝜑𝑆𝑈)
163 sspss 3706 . . 3 (𝑆𝑈 ↔ (𝑆𝑈𝑆 = 𝑈))
164162, 163sylib 208 . 2 (𝜑 → (𝑆𝑈𝑆 = 𝑈))
165138, 159, 164mpjaod 396 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  cin 3573  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653   Or wor 5034  dom cdm 5114  cfv 5888  (class class class)co 6650   [] crpss 6936  Fincfn 7955  cardccrd 8761  Basecbs 15857  0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Grpcgrp 17422  .gcmg 17540  SubGrpcsubg 17588  odcod 17944  gExcgex 17945   pGrp cpgp 17946  LSSumclsm 18049  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-cntz 17750  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  pgpfac1  18479
  Copyright terms: Public domain W3C validator