MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Visualization version   GIF version

Theorem lsppratlem3 19149
Description: Lemma for lspprat 19153. In the first case of lsppratlem1 19147, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem3.x3 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lsppratlem3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lveclmod 19106 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
4 lspprat.y . . . . . . . 8 (𝜑𝑌𝑉)
54snssd 4340 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
6 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprat.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 7lspssv 18983 . . . . . . 7 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
93, 5, 8syl2anc 693 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
10 lsppratlem3.x3 . . . . . 6 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
119, 10sseldd 3604 . . . . 5 (𝜑𝑥𝑉)
1211snssd 4340 . . . 4 (𝜑 → {𝑥} ⊆ 𝑉)
13 lspprat.x . . . 4 (𝜑𝑋𝑉)
14 lspprat.p . . . . . . . 8 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1514pssssd 3704 . . . . . . 7 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
1613snssd 4340 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ 𝑉)
1712, 16unssd 3789 . . . . . . . . 9 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉)
18 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
196, 18, 7lspcl 18976 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
203, 17, 19syl2anc 693 . . . . . . . 8 (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
21 df-pr 4180 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
226, 7lspssid 18985 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
233, 17, 22syl2anc 693 . . . . . . . . . . 11 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
2423unssbd 3791 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
25 ssun1 3776 . . . . . . . . . . . . . 14 {𝑥} ⊆ ({𝑥} ∪ {𝑋})
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋}))
276, 7lspss 18984 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
283, 17, 26, 27syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
29 0ss 3972 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑉
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ⊆ 𝑉)
31 uncom 3757 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑌}) = ({𝑌} ∪ ∅)
32 un0 3967 . . . . . . . . . . . . . . . . . 18 ({𝑌} ∪ ∅) = {𝑌}
3331, 32eqtri 2644 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑌}) = {𝑌}
3433fveq2i 6194 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌})
3510, 34syl6eleqr 2712 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ (𝑁‘(∅ ∪ {𝑌})))
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
3736eldifbd 3587 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑥 ∈ { 0 })
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18 0 = (0g𝑊)
3938, 7lsp0 19009 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
403, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁‘∅) = { 0 })
4137, 40neleqtrrd 2723 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅))
4235, 41eldifd 3585 . . . . . . . . . . . . . 14 (𝜑𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))
436, 18, 7lspsolv 19143 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑌𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
441, 30, 4, 42, 43syl13anc 1328 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
45 uncom 3757 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
46 un0 3967 . . . . . . . . . . . . . . 15 ({𝑥} ∪ ∅) = {𝑥}
4745, 46eqtri 2644 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = {𝑥}
4847fveq2i 6194 . . . . . . . . . . . . 13 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
4944, 48syl6eleq 2711 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝑥}))
5028, 49sseldd 3604 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋})))
5150snssd 4340 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5224, 51unssd 3789 . . . . . . . . 9 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5321, 52syl5eqss 3649 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5418, 7lspssp 18988 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
553, 20, 53, 54syl3anc 1326 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5615, 55sstrd 3613 . . . . . 6 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5756ssdifd 3746 . . . . 5 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
58 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
5957, 58sseldd 3604 . . . 4 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
606, 18, 7lspsolv 19143 . . . 4 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑋𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
611, 12, 13, 59, 60syl13anc 1328 . . 3 (𝜑𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
62 df-pr 4180 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
6362fveq2i 6194 . . 3 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
6461, 63syl6eleqr 2712 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
65 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
666, 18lssss 18937 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
6765, 66syl 17 . . . . . . . . 9 (𝜑𝑈𝑉)
6867ssdifssd 3748 . . . . . . . 8 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
6968, 58sseldd 3604 . . . . . . 7 (𝜑𝑦𝑉)
7069snssd 4340 . . . . . 6 (𝜑 → {𝑦} ⊆ 𝑉)
7112, 70unssd 3789 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑦}) ⊆ 𝑉)
7262, 71syl5eqss 3649 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
73 snsspr1 4345 . . . . 5 {𝑥} ⊆ {𝑥, 𝑦}
7473a1i 11 . . . 4 (𝜑 → {𝑥} ⊆ {𝑥, 𝑦})
756, 7lspss 18984 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
763, 72, 74, 75syl3anc 1326 . . 3 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
7776, 49sseldd 3604 . 2 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
7864, 77jca 554 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  wss 3574  wpss 3575  c0 3915  {csn 4177  {cpr 4179  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lsppratlem5  19151
  Copyright terms: Public domain W3C validator