MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem2 Structured version   Visualization version   GIF version

Theorem pwfseqlem2 9481
Description: Lemma for pwfseq 9486. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem2 ((𝑌 ∈ Fin ∧ 𝑅𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌)))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥,𝑧   𝜑,𝑛,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑛,𝑟,𝑥,𝑧   𝑉,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝑅(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑟)   𝑉(𝑧,𝑤,𝑛)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑟)   𝑌(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem2
Dummy variables 𝑎 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . 3 (𝑎 = 𝑌 → (𝑎𝐹𝑠) = (𝑌𝐹𝑠))
2 fveq2 6191 . . . 4 (𝑎 = 𝑌 → (card‘𝑎) = (card‘𝑌))
32fveq2d 6195 . . 3 (𝑎 = 𝑌 → (𝐻‘(card‘𝑎)) = (𝐻‘(card‘𝑌)))
41, 3eqeq12d 2637 . 2 (𝑎 = 𝑌 → ((𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)) ↔ (𝑌𝐹𝑠) = (𝐻‘(card‘𝑌))))
5 oveq2 6658 . . 3 (𝑠 = 𝑅 → (𝑌𝐹𝑠) = (𝑌𝐹𝑅))
65eqeq1d 2624 . 2 (𝑠 = 𝑅 → ((𝑌𝐹𝑠) = (𝐻‘(card‘𝑌)) ↔ (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))))
7 nfcv 2764 . . 3 𝑥𝑎
8 nfcv 2764 . . 3 𝑟𝑎
9 nfcv 2764 . . 3 𝑟𝑠
10 pwfseqlem4.f . . . . . 6 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
11 nfmpt21 6722 . . . . . 6 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
1210, 11nfcxfr 2762 . . . . 5 𝑥𝐹
13 nfcv 2764 . . . . 5 𝑥𝑟
147, 12, 13nfov 6676 . . . 4 𝑥(𝑎𝐹𝑟)
1514nfeq1 2778 . . 3 𝑥(𝑎𝐹𝑟) = (𝐻‘(card‘𝑎))
16 nfmpt22 6723 . . . . . 6 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
1710, 16nfcxfr 2762 . . . . 5 𝑟𝐹
188, 17, 9nfov 6676 . . . 4 𝑟(𝑎𝐹𝑠)
1918nfeq1 2778 . . 3 𝑟(𝑎𝐹𝑠) = (𝐻‘(card‘𝑎))
20 oveq1 6657 . . . 4 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
21 fveq2 6191 . . . . 5 (𝑥 = 𝑎 → (card‘𝑥) = (card‘𝑎))
2221fveq2d 6195 . . . 4 (𝑥 = 𝑎 → (𝐻‘(card‘𝑥)) = (𝐻‘(card‘𝑎)))
2320, 22eqeq12d 2637 . . 3 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) = (𝐻‘(card‘𝑥)) ↔ (𝑎𝐹𝑟) = (𝐻‘(card‘𝑎))))
24 oveq2 6658 . . . 4 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
2524eqeq1d 2624 . . 3 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)) ↔ (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎))))
26 vex 3203 . . . . . 6 𝑥 ∈ V
27 vex 3203 . . . . . 6 𝑟 ∈ V
28 fvex 6201 . . . . . . 7 (𝐻‘(card‘𝑥)) ∈ V
29 fvex 6201 . . . . . . 7 (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ V
3028, 29ifex 4156 . . . . . 6 if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V
3110ovmpt4g 6783 . . . . . 6 ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
3226, 27, 30, 31mp3an 1424 . . . . 5 (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
33 iftrue 4092 . . . . 5 (𝑥 ∈ Fin → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) = (𝐻‘(card‘𝑥)))
3432, 33syl5eq 2668 . . . 4 (𝑥 ∈ Fin → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥)))
3534adantr 481 . . 3 ((𝑥 ∈ Fin ∧ 𝑟𝑉) → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥)))
367, 8, 9, 15, 19, 23, 25, 35vtocl2gaf 3273 . 2 ((𝑎 ∈ Fin ∧ 𝑠𝑉) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))
374, 6, 36vtocl2ga 3274 1 ((𝑌 ∈ Fin ∧ 𝑅𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  ifcif 4086  𝒫 cpw 4158   cint 4475   ciun 4520   class class class wbr 4653   We wwe 5072   × cxp 5112  ccnv 5113  ran crn 5115  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  𝑚 cmap 7857  cdom 7953  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  pwfseqlem4a  9483  pwfseqlem4  9484
  Copyright terms: Public domain W3C validator