MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem3 Structured version   Visualization version   GIF version

Theorem pwfseqlem3 9482
Description: Lemma for pwfseq 9486. Using the construction 𝐷 from pwfseqlem1 9480, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem3 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥,𝑧   𝜑,𝑛,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4 𝑥 ∈ V
2 vex 3203 . . . 4 𝑟 ∈ V
3 fvex 6201 . . . . 5 (𝐻‘(card‘𝑥)) ∈ V
4 fvex 6201 . . . . 5 (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ V
53, 4ifex 4156 . . . 4 if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V
6 pwfseqlem4.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
76ovmpt4g 6783 . . . 4 ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
81, 2, 5, 7mp3an 1424 . . 3 (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
9 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
109simprbi 480 . . . . . . 7 (𝜓 → ω ≼ 𝑥)
1110adantl 482 . . . . . 6 ((𝜑𝜓) → ω ≼ 𝑥)
12 domnsym 8086 . . . . . 6 (ω ≼ 𝑥 → ¬ 𝑥 ≺ ω)
1311, 12syl 17 . . . . 5 ((𝜑𝜓) → ¬ 𝑥 ≺ ω)
14 isfinite 8549 . . . . 5 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
1513, 14sylnibr 319 . . . 4 ((𝜑𝜓) → ¬ 𝑥 ∈ Fin)
1615iffalsed 4097 . . 3 ((𝜑𝜓) → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
178, 16syl5eq 2668 . 2 ((𝜑𝜓) → (𝑥𝐹𝑟) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
18 pwfseqlem4.g . . . . . . 7 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
19 pwfseqlem4.x . . . . . . 7 (𝜑𝑋𝐴)
20 pwfseqlem4.h . . . . . . 7 (𝜑𝐻:ω–1-1-onto𝑋)
21 pwfseqlem4.k . . . . . . 7 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
22 pwfseqlem4.d . . . . . . 7 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2318, 19, 20, 9, 21, 22pwfseqlem1 9480 . . . . . 6 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∖ 𝑛 ∈ ω (𝑥𝑚 𝑛)))
24 eldif 3584 . . . . . 6 (𝐷 ∈ ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∖ 𝑛 ∈ ω (𝑥𝑚 𝑛)) ↔ (𝐷 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)))
2523, 24sylib 208 . . . . 5 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)))
2625simpld 475 . . . 4 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴𝑚 𝑛))
27 eliun 4524 . . . 4 (𝐷 𝑛 ∈ ω (𝐴𝑚 𝑛) ↔ ∃𝑛 ∈ ω 𝐷 ∈ (𝐴𝑚 𝑛))
2826, 27sylib 208 . . 3 ((𝜑𝜓) → ∃𝑛 ∈ ω 𝐷 ∈ (𝐴𝑚 𝑛))
29 elmapi 7879 . . . . . 6 (𝐷 ∈ (𝐴𝑚 𝑛) → 𝐷:𝑛𝐴)
3029ad2antll 765 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → 𝐷:𝑛𝐴)
31 ssiun2 4563 . . . . . . . . 9 (𝑛 ∈ ω → (𝑥𝑚 𝑛) ⊆ 𝑛 ∈ ω (𝑥𝑚 𝑛))
3231ad2antrl 764 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝑥𝑚 𝑛) ⊆ 𝑛 ∈ ω (𝑥𝑚 𝑛))
3325simprd 479 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛))
3433adantr 481 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ¬ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛))
3532, 34ssneldd 3606 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ¬ 𝐷 ∈ (𝑥𝑚 𝑛))
36 vex 3203 . . . . . . . . 9 𝑛 ∈ V
371, 36elmap 7886 . . . . . . . 8 (𝐷 ∈ (𝑥𝑚 𝑛) ↔ 𝐷:𝑛𝑥)
38 ffn 6045 . . . . . . . . 9 (𝐷:𝑛𝐴𝐷 Fn 𝑛)
39 ffnfv 6388 . . . . . . . . . 10 (𝐷:𝑛𝑥 ↔ (𝐷 Fn 𝑛 ∧ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4039baib 944 . . . . . . . . 9 (𝐷 Fn 𝑛 → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4130, 38, 403syl 18 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4237, 41syl5bb 272 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝐷 ∈ (𝑥𝑚 𝑛) ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4335, 42mtbid 314 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
44 nnon 7071 . . . . . . . . 9 (𝑛 ∈ ω → 𝑛 ∈ On)
4544ad2antrl 764 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ On)
46 ssrab2 3687 . . . . . . . . . 10 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ ω
47 omsson 7069 . . . . . . . . . 10 ω ⊆ On
4846, 47sstri 3612 . . . . . . . . 9 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On
49 ordom 7074 . . . . . . . . . . . . 13 Ord ω
50 simprl 794 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ ω)
51 ordelss 5739 . . . . . . . . . . . . 13 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5249, 50, 51sylancr 695 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → 𝑛 ⊆ ω)
53 rexnal 2995 . . . . . . . . . . . . 13 (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
5443, 53sylibr 224 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥)
55 ssrexv 3667 . . . . . . . . . . . 12 (𝑛 ⊆ ω → (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥))
5652, 54, 55sylc 65 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
57 rabn0 3958 . . . . . . . . . . 11 ({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅ ↔ ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
5856, 57sylibr 224 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅)
59 onint 6995 . . . . . . . . . 10 (({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6048, 58, 59sylancr 695 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6148, 60sseldi 3601 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On)
62 ontri1 5757 . . . . . . . 8 ((𝑛 ∈ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
6345, 61, 62syl2anc 693 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
64 ssintrab 4500 . . . . . . . 8 (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧))
65 nnon 7071 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ On)
66 ontri1 5757 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ On ∧ 𝑧 ∈ On) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6744, 65, 66syl2an 494 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6867imbi2d 330 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛)))
69 con34b 306 . . . . . . . . . . . . . 14 ((𝑧𝑛 → (𝐷𝑧) ∈ 𝑥) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛))
7068, 69syl6bbr 278 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7170pm5.74da 723 . . . . . . . . . . . 12 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥))))
72 bi2.04 376 . . . . . . . . . . . 12 ((𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)))
7371, 72syl6bb 276 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥))))
74 elnn 7075 . . . . . . . . . . . . . 14 ((𝑧𝑛𝑛 ∈ ω) → 𝑧 ∈ ω)
75 pm2.27 42 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑧𝑛𝑛 ∈ ω) → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7776expcom 451 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝑧𝑛 → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥)))
7877a2d 29 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7973, 78sylbid 230 . . . . . . . . . 10 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8079ad2antrl 764 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8180ralimdv2 2961 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8264, 81syl5bi 232 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8363, 82sylbird 250 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛 → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8443, 83mt3d 140 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛)
8530, 84ffvelrnd 6360 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝐴)
86 fveq2 6191 . . . . . . . . 9 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (𝐷𝑦) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
8786eleq1d 2686 . . . . . . . 8 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ((𝐷𝑦) ∈ 𝑥 ↔ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
8887notbid 308 . . . . . . 7 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (¬ (𝐷𝑦) ∈ 𝑥 ↔ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
89 fveq2 6191 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐷𝑧) = (𝐷𝑦))
9089eleq1d 2686 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐷𝑧) ∈ 𝑥 ↔ (𝐷𝑦) ∈ 𝑥))
9190notbid 308 . . . . . . . 8 (𝑧 = 𝑦 → (¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ (𝐷𝑦) ∈ 𝑥))
9291cbvrabv 3199 . . . . . . 7 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} = {𝑦 ∈ ω ∣ ¬ (𝐷𝑦) ∈ 𝑥}
9388, 92elrab2 3366 . . . . . 6 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ ω ∧ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
9493simprbi 480 . . . . 5 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9560, 94syl 17 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9685, 95eldifd 3585 . . 3 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴𝑚 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9728, 96rexlimddv 3035 . 2 ((𝜑𝜓) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9817, 97eqeltrd 2701 1 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   cint 4475   ciun 4520   class class class wbr 4653   We wwe 5072   × cxp 5112  ccnv 5113  ran crn 5115  Ord word 5722  Oncon0 5723   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  𝑚 cmap 7857  cdom 7953  csdm 7954  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  pwfseqlem4a  9483  pwfseqlem4  9484
  Copyright terms: Public domain W3C validator