MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem2 Structured version   Visualization version   Unicode version

Theorem pwfseqlem2 9481
Description: Lemma for pwfseq 9486. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
pwfseqlem4.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem4.x  |-  ( ph  ->  X  C_  A )
pwfseqlem4.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem4.ps  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
pwfseqlem4.k  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
pwfseqlem4.d  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
pwfseqlem4.f  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
Assertion
Ref Expression
pwfseqlem2  |-  ( ( Y  e.  Fin  /\  R  e.  V )  ->  ( Y F R )  =  ( H `
 ( card `  Y
) ) )
Distinct variable groups:    n, r, w, x, z    D, n, z    w, G    w, K    H, r, x, z    ph, n, r, x, z    ps, n, z    A, n, r, x, z    V, r, x
Allowed substitution hints:    ph( w)    ps( x, w, r)    A( w)    D( x, w, r)    R( x, z, w, n, r)    F( x, z, w, n, r)    G( x, z, n, r)    H( w, n)    K( x, z, n, r)    V( z, w, n)    X( x, z, w, n, r)    Y( x, z, w, n, r)

Proof of Theorem pwfseqlem2
Dummy variables  a 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . 3  |-  ( a  =  Y  ->  (
a F s )  =  ( Y F s ) )
2 fveq2 6191 . . . 4  |-  ( a  =  Y  ->  ( card `  a )  =  ( card `  Y
) )
32fveq2d 6195 . . 3  |-  ( a  =  Y  ->  ( H `  ( card `  a ) )  =  ( H `  ( card `  Y ) ) )
41, 3eqeq12d 2637 . 2  |-  ( a  =  Y  ->  (
( a F s )  =  ( H `
 ( card `  a
) )  <->  ( Y F s )  =  ( H `  ( card `  Y ) ) ) )
5 oveq2 6658 . . 3  |-  ( s  =  R  ->  ( Y F s )  =  ( Y F R ) )
65eqeq1d 2624 . 2  |-  ( s  =  R  ->  (
( Y F s )  =  ( H `
 ( card `  Y
) )  <->  ( Y F R )  =  ( H `  ( card `  Y ) ) ) )
7 nfcv 2764 . . 3  |-  F/_ x
a
8 nfcv 2764 . . 3  |-  F/_ r
a
9 nfcv 2764 . . 3  |-  F/_ r
s
10 pwfseqlem4.f . . . . . 6  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
11 nfmpt21 6722 . . . . . 6  |-  F/_ x
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
1210, 11nfcxfr 2762 . . . . 5  |-  F/_ x F
13 nfcv 2764 . . . . 5  |-  F/_ x
r
147, 12, 13nfov 6676 . . . 4  |-  F/_ x
( a F r )
1514nfeq1 2778 . . 3  |-  F/ x
( a F r )  =  ( H `
 ( card `  a
) )
16 nfmpt22 6723 . . . . . 6  |-  F/_ r
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
1710, 16nfcxfr 2762 . . . . 5  |-  F/_ r F
188, 17, 9nfov 6676 . . . 4  |-  F/_ r
( a F s )
1918nfeq1 2778 . . 3  |-  F/ r ( a F s )  =  ( H `
 ( card `  a
) )
20 oveq1 6657 . . . 4  |-  ( x  =  a  ->  (
x F r )  =  ( a F r ) )
21 fveq2 6191 . . . . 5  |-  ( x  =  a  ->  ( card `  x )  =  ( card `  a
) )
2221fveq2d 6195 . . . 4  |-  ( x  =  a  ->  ( H `  ( card `  x ) )  =  ( H `  ( card `  a ) ) )
2320, 22eqeq12d 2637 . . 3  |-  ( x  =  a  ->  (
( x F r )  =  ( H `
 ( card `  x
) )  <->  ( a F r )  =  ( H `  ( card `  a ) ) ) )
24 oveq2 6658 . . . 4  |-  ( r  =  s  ->  (
a F r )  =  ( a F s ) )
2524eqeq1d 2624 . . 3  |-  ( r  =  s  ->  (
( a F r )  =  ( H `
 ( card `  a
) )  <->  ( a F s )  =  ( H `  ( card `  a ) ) ) )
26 vex 3203 . . . . . 6  |-  x  e. 
_V
27 vex 3203 . . . . . 6  |-  r  e. 
_V
28 fvex 6201 . . . . . . 7  |-  ( H `
 ( card `  x
) )  e.  _V
29 fvex 6201 . . . . . . 7  |-  ( D `
 |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e. 
_V
3028, 29ifex 4156 . . . . . 6  |-  if ( x  e.  Fin , 
( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  e. 
_V
3110ovmpt4g 6783 . . . . . 6  |-  ( ( x  e.  _V  /\  r  e.  _V  /\  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  e. 
_V )  ->  (
x F r )  =  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
) ) )
3226, 27, 30, 31mp3an 1424 . . . . 5  |-  ( x F r )  =  if ( x  e. 
Fin ,  ( H `  ( card `  x
) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )
33 iftrue 4092 . . . . 5  |-  ( x  e.  Fin  ->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  =  ( H `  ( card `  x ) ) )
3432, 33syl5eq 2668 . . . 4  |-  ( x  e.  Fin  ->  (
x F r )  =  ( H `  ( card `  x )
) )
3534adantr 481 . . 3  |-  ( ( x  e.  Fin  /\  r  e.  V )  ->  ( x F r )  =  ( H `
 ( card `  x
) ) )
367, 8, 9, 15, 19, 23, 25, 35vtocl2gaf 3273 . 2  |-  ( ( a  e.  Fin  /\  s  e.  V )  ->  ( a F s )  =  ( H `
 ( card `  a
) ) )
374, 6, 36vtocl2ga 3274 1  |-  ( ( Y  e.  Fin  /\  R  e.  V )  ->  ( Y F R )  =  ( H `
 ( card `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   |^|cint 4475   U_ciun 4520   class class class wbr 4653    We wwe 5072    X. cxp 5112   `'ccnv 5113   ran crn 5115   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065    ^m cmap 7857    ~<_ cdom 7953   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  pwfseqlem4a  9483  pwfseqlem4  9484
  Copyright terms: Public domain W3C validator