| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfseqlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for pwfseq 9486. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| pwfseqlem4.g |
|
| pwfseqlem4.x |
|
| pwfseqlem4.h |
|
| pwfseqlem4.ps |
|
| pwfseqlem4.k |
|
| pwfseqlem4.d |
|
| pwfseqlem4.f |
|
| Ref | Expression |
|---|---|
| pwfseqlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . 3
| |
| 2 | fveq2 6191 |
. . . 4
| |
| 3 | 2 | fveq2d 6195 |
. . 3
|
| 4 | 1, 3 | eqeq12d 2637 |
. 2
|
| 5 | oveq2 6658 |
. . 3
| |
| 6 | 5 | eqeq1d 2624 |
. 2
|
| 7 | nfcv 2764 |
. . 3
| |
| 8 | nfcv 2764 |
. . 3
| |
| 9 | nfcv 2764 |
. . 3
| |
| 10 | pwfseqlem4.f |
. . . . . 6
| |
| 11 | nfmpt21 6722 |
. . . . . 6
| |
| 12 | 10, 11 | nfcxfr 2762 |
. . . . 5
|
| 13 | nfcv 2764 |
. . . . 5
| |
| 14 | 7, 12, 13 | nfov 6676 |
. . . 4
|
| 15 | 14 | nfeq1 2778 |
. . 3
|
| 16 | nfmpt22 6723 |
. . . . . 6
| |
| 17 | 10, 16 | nfcxfr 2762 |
. . . . 5
|
| 18 | 8, 17, 9 | nfov 6676 |
. . . 4
|
| 19 | 18 | nfeq1 2778 |
. . 3
|
| 20 | oveq1 6657 |
. . . 4
| |
| 21 | fveq2 6191 |
. . . . 5
| |
| 22 | 21 | fveq2d 6195 |
. . . 4
|
| 23 | 20, 22 | eqeq12d 2637 |
. . 3
|
| 24 | oveq2 6658 |
. . . 4
| |
| 25 | 24 | eqeq1d 2624 |
. . 3
|
| 26 | vex 3203 |
. . . . . 6
| |
| 27 | vex 3203 |
. . . . . 6
| |
| 28 | fvex 6201 |
. . . . . . 7
| |
| 29 | fvex 6201 |
. . . . . . 7
| |
| 30 | 28, 29 | ifex 4156 |
. . . . . 6
|
| 31 | 10 | ovmpt4g 6783 |
. . . . . 6
|
| 32 | 26, 27, 30, 31 | mp3an 1424 |
. . . . 5
|
| 33 | iftrue 4092 |
. . . . 5
| |
| 34 | 32, 33 | syl5eq 2668 |
. . . 4
|
| 35 | 34 | adantr 481 |
. . 3
|
| 36 | 7, 8, 9, 15, 19, 23, 25, 35 | vtocl2gaf 3273 |
. 2
|
| 37 | 4, 6, 36 | vtocl2ga 3274 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: pwfseqlem4a 9483 pwfseqlem4 9484 |
| Copyright terms: Public domain | W3C validator |