Proof of Theorem r0cld
| Step | Hyp | Ref
| Expression |
| 1 | | kqval.2 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 2 | 1 | kqffn 21528 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 3 | 2 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → 𝐹 Fn 𝑋) |
| 4 | | fncnvima2 6339 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (◡𝐹 “ {(𝐹‘𝐴)}) = {𝑧 ∈ 𝑋 ∣ (𝐹‘𝑧) ∈ {(𝐹‘𝐴)}}) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (◡𝐹 “ {(𝐹‘𝐴)}) = {𝑧 ∈ 𝑋 ∣ (𝐹‘𝑧) ∈ {(𝐹‘𝐴)}}) |
| 6 | | fvex 6201 |
. . . . . 6
⊢ (𝐹‘𝑧) ∈ V |
| 7 | 6 | elsn 4192 |
. . . . 5
⊢ ((𝐹‘𝑧) ∈ {(𝐹‘𝐴)} ↔ (𝐹‘𝑧) = (𝐹‘𝐴)) |
| 8 | | simpl1 1064 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | | simpr 477 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 10 | | simpl3 1066 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 11 | 1 | kqfeq 21527 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝐴) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦))) |
| 12 | | eleq2 2690 |
. . . . . . . . 9
⊢ (𝑦 = 𝑜 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑜)) |
| 13 | | eleq2 2690 |
. . . . . . . . 9
⊢ (𝑦 = 𝑜 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑜)) |
| 14 | 12, 13 | bibi12d 335 |
. . . . . . . 8
⊢ (𝑦 = 𝑜 → ((𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦) ↔ (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜))) |
| 15 | 14 | cbvralv 3171 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐽 (𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)) |
| 16 | 11, 15 | syl6bb 276 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝐴) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜))) |
| 17 | 8, 9, 10, 16 | syl3anc 1326 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝐴) ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜))) |
| 18 | 7, 17 | syl5bb 272 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {(𝐹‘𝐴)} ↔ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜))) |
| 19 | 18 | rabbidva 3188 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝑧 ∈ 𝑋 ∣ (𝐹‘𝑧) ∈ {(𝐹‘𝐴)}} = {𝑧 ∈ 𝑋 ∣ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)}) |
| 20 | 5, 19 | eqtrd 2656 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (◡𝐹 “ {(𝐹‘𝐴)}) = {𝑧 ∈ 𝑋 ∣ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)}) |
| 21 | 1 | kqid 21531 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 22 | 21 | 3ad2ant1 1082 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 23 | | simp2 1062 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (KQ‘𝐽) ∈ Fre) |
| 24 | | simp3 1063 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 25 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) |
| 26 | 3, 24, 25 | syl2anc 693 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) |
| 27 | 1 | kqtopon 21530 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 28 | 27 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 29 | | toponuni 20719 |
. . . . . 6
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
ran 𝐹 = ∪ (KQ‘𝐽)) |
| 30 | 28, 29 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∪
(KQ‘𝐽)) |
| 31 | 26, 30 | eleqtrd 2703 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ∪
(KQ‘𝐽)) |
| 32 | | eqid 2622 |
. . . . 5
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
| 33 | 32 | t1sncld 21130 |
. . . 4
⊢
(((KQ‘𝐽)
∈ Fre ∧ (𝐹‘𝐴) ∈ ∪
(KQ‘𝐽)) →
{(𝐹‘𝐴)} ∈ (Clsd‘(KQ‘𝐽))) |
| 34 | 23, 31, 33 | syl2anc 693 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → {(𝐹‘𝐴)} ∈ (Clsd‘(KQ‘𝐽))) |
| 35 | | cnclima 21072 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ {(𝐹‘𝐴)} ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ {(𝐹‘𝐴)}) ∈ (Clsd‘𝐽)) |
| 36 | 22, 34, 35 | syl2anc 693 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → (◡𝐹 “ {(𝐹‘𝐴)}) ∈ (Clsd‘𝐽)) |
| 37 | 20, 36 | eqeltrrd 2702 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝑧 ∈ 𝑋 ∣ ∀𝑜 ∈ 𝐽 (𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)} ∈ (Clsd‘𝐽)) |