MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0cld Structured version   Visualization version   Unicode version

Theorem r0cld 21541
Description: The analogue of the T1 axiom (singletons are closed) for an R0 space. In an R0 space the set of all points topologically indistinguishable from  A is closed. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
r0cld  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  { z  e.  X  |  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) }  e.  (
Clsd `  J )
)
Distinct variable groups:    x, o,
y, z, A    o, J, x, y, z    o, F, z    o, X, x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem r0cld
StepHypRef Expression
1 kqval.2 . . . . . 6  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqffn 21528 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
323ad2ant1 1082 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  F  Fn  X
)
4 fncnvima2 6339 . . . 4  |-  ( F  Fn  X  ->  ( `' F " { ( F `  A ) } )  =  {
z  e.  X  | 
( F `  z
)  e.  { ( F `  A ) } } )
53, 4syl 17 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ( `' F " { ( F `  A ) } )  =  { z  e.  X  |  ( F `
 z )  e. 
{ ( F `  A ) } }
)
6 fvex 6201 . . . . . 6  |-  ( F `
 z )  e. 
_V
76elsn 4192 . . . . 5  |-  ( ( F `  z )  e.  { ( F `
 A ) }  <-> 
( F `  z
)  =  ( F `
 A ) )
8 simpl1 1064 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  /\  z  e.  X
)  ->  J  e.  (TopOn `  X ) )
9 simpr 477 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  /\  z  e.  X
)  ->  z  e.  X )
10 simpl3 1066 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  /\  z  e.  X
)  ->  A  e.  X )
111kqfeq 21527 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  A  e.  X )  ->  (
( F `  z
)  =  ( F `
 A )  <->  A. y  e.  J  ( z  e.  y  <->  A  e.  y
) ) )
12 eleq2 2690 . . . . . . . . 9  |-  ( y  =  o  ->  (
z  e.  y  <->  z  e.  o ) )
13 eleq2 2690 . . . . . . . . 9  |-  ( y  =  o  ->  ( A  e.  y  <->  A  e.  o ) )
1412, 13bibi12d 335 . . . . . . . 8  |-  ( y  =  o  ->  (
( z  e.  y  <-> 
A  e.  y )  <-> 
( z  e.  o  <-> 
A  e.  o ) ) )
1514cbvralv 3171 . . . . . . 7  |-  ( A. y  e.  J  (
z  e.  y  <->  A  e.  y )  <->  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) )
1611, 15syl6bb 276 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  A  e.  X )  ->  (
( F `  z
)  =  ( F `
 A )  <->  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) ) )
178, 9, 10, 16syl3anc 1326 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  /\  z  e.  X
)  ->  ( ( F `  z )  =  ( F `  A )  <->  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) ) )
187, 17syl5bb 272 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  /\  z  e.  X
)  ->  ( ( F `  z )  e.  { ( F `  A ) }  <->  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) ) )
1918rabbidva 3188 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  { z  e.  X  |  ( F `
 z )  e. 
{ ( F `  A ) } }  =  { z  e.  X  |  A. o  e.  J  ( z  e.  o  <-> 
A  e.  o ) } )
205, 19eqtrd 2656 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ( `' F " { ( F `  A ) } )  =  { z  e.  X  |  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) } )
211kqid 21531 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
22213ad2ant1 1082 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
23 simp2 1062 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  (KQ `  J
)  e.  Fre )
24 simp3 1063 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  A  e.  X
)
25 fnfvelrn 6356 . . . . . 6  |-  ( ( F  Fn  X  /\  A  e.  X )  ->  ( F `  A
)  e.  ran  F
)
263, 24, 25syl2anc 693 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ( F `  A )  e.  ran  F )
271kqtopon 21530 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
28273ad2ant1 1082 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
29 toponuni 20719 . . . . . 6  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ran  F  =  U. (KQ `  J ) )
3028, 29syl 17 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ran  F  =  U. (KQ `  J ) )
3126, 30eleqtrd 2703 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ( F `  A )  e.  U. (KQ `  J ) )
32 eqid 2622 . . . . 5  |-  U. (KQ `  J )  =  U. (KQ `  J )
3332t1sncld 21130 . . . 4  |-  ( ( (KQ `  J )  e.  Fre  /\  ( F `  A )  e.  U. (KQ `  J
) )  ->  { ( F `  A ) }  e.  ( Clsd `  (KQ `  J ) ) )
3423, 31, 33syl2anc 693 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  { ( F `
 A ) }  e.  ( Clsd `  (KQ `  J ) ) )
35 cnclima 21072 . . 3  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  {
( F `  A
) }  e.  (
Clsd `  (KQ `  J
) ) )  -> 
( `' F " { ( F `  A ) } )  e.  ( Clsd `  J
) )
3622, 34, 35syl2anc 693 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  ( `' F " { ( F `  A ) } )  e.  ( Clsd `  J
) )
3720, 36eqeltrrd 2702 1  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre  /\  A  e.  X )  ->  { z  e.  X  |  A. o  e.  J  ( z  e.  o  <->  A  e.  o
) }  e.  (
Clsd `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715   Clsdccld 20820    Cn ccn 21028   Frect1 21111  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823  df-cn 21031  df-t1 21118  df-kq 21497
This theorem is referenced by:  nrmr0reg  21552
  Copyright terms: Public domain W3C validator