| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r0cld | Structured version Visualization version Unicode version | ||
| Description: The analogue of the
T1 axiom (singletons are closed) for an
R0 space.
In an R0 space the set of all points
topologically indistinguishable
from |
| Ref | Expression |
|---|---|
| kqval.2 |
|
| Ref | Expression |
|---|---|
| r0cld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 |
. . . . . 6
| |
| 2 | 1 | kqffn 21528 |
. . . . 5
|
| 3 | 2 | 3ad2ant1 1082 |
. . . 4
|
| 4 | fncnvima2 6339 |
. . . 4
| |
| 5 | 3, 4 | syl 17 |
. . 3
|
| 6 | fvex 6201 |
. . . . . 6
| |
| 7 | 6 | elsn 4192 |
. . . . 5
|
| 8 | simpl1 1064 |
. . . . . 6
| |
| 9 | simpr 477 |
. . . . . 6
| |
| 10 | simpl3 1066 |
. . . . . 6
| |
| 11 | 1 | kqfeq 21527 |
. . . . . . 7
|
| 12 | eleq2 2690 |
. . . . . . . . 9
| |
| 13 | eleq2 2690 |
. . . . . . . . 9
| |
| 14 | 12, 13 | bibi12d 335 |
. . . . . . . 8
|
| 15 | 14 | cbvralv 3171 |
. . . . . . 7
|
| 16 | 11, 15 | syl6bb 276 |
. . . . . 6
|
| 17 | 8, 9, 10, 16 | syl3anc 1326 |
. . . . 5
|
| 18 | 7, 17 | syl5bb 272 |
. . . 4
|
| 19 | 18 | rabbidva 3188 |
. . 3
|
| 20 | 5, 19 | eqtrd 2656 |
. 2
|
| 21 | 1 | kqid 21531 |
. . . 4
|
| 22 | 21 | 3ad2ant1 1082 |
. . 3
|
| 23 | simp2 1062 |
. . . 4
| |
| 24 | simp3 1063 |
. . . . . 6
| |
| 25 | fnfvelrn 6356 |
. . . . . 6
| |
| 26 | 3, 24, 25 | syl2anc 693 |
. . . . 5
|
| 27 | 1 | kqtopon 21530 |
. . . . . . 7
|
| 28 | 27 | 3ad2ant1 1082 |
. . . . . 6
|
| 29 | toponuni 20719 |
. . . . . 6
| |
| 30 | 28, 29 | syl 17 |
. . . . 5
|
| 31 | 26, 30 | eleqtrd 2703 |
. . . 4
|
| 32 | eqid 2622 |
. . . . 5
| |
| 33 | 32 | t1sncld 21130 |
. . . 4
|
| 34 | 23, 31, 33 | syl2anc 693 |
. . 3
|
| 35 | cnclima 21072 |
. . 3
| |
| 36 | 22, 34, 35 | syl2anc 693 |
. 2
|
| 37 | 20, 36 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-qtop 16167 df-top 20699 df-topon 20716 df-cld 20823 df-cn 21031 df-t1 21118 df-kq 21497 |
| This theorem is referenced by: nrmr0reg 21552 |
| Copyright terms: Public domain | W3C validator |