Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Structured version   Visualization version   GIF version

Theorem dvdsrabdioph 37374
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑡)

Proof of Theorem dvdsrabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 37365 . . . 4 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ)
2 rabdiophlem1 37365 . . . 4 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ)
3 divides 14985 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵))
4 oveq1 6657 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝐴) = (𝑏 · 𝐴))
54eqeq1d 2624 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (𝑏 · 𝐴) = 𝐵))
6 oveq1 6657 . . . . . . . . 9 (𝑎 = -𝑏 → (𝑎 · 𝐴) = (-𝑏 · 𝐴))
76eqeq1d 2624 . . . . . . . 8 (𝑎 = -𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝐴) = 𝐵))
85, 7rexzrexnn0 37368 . . . . . . 7 (∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵))
93, 8syl6bb 276 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
109ralimi 2952 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
11 r19.26 3064 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ))
12 rabbi 3120 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
1310, 11, 123imtr3i 280 . . . 4 ((∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
141, 2, 13syl2an 494 . . 3 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
15143adant1 1079 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
16 nfcv 2764 . . . 4 𝑡(ℕ0𝑚 (1...𝑁))
17 nfcv 2764 . . . 4 𝑎(ℕ0𝑚 (1...𝑁))
18 nfv 1843 . . . 4 𝑎𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)
19 nfcv 2764 . . . . 5 𝑡0
20 nfcv 2764 . . . . . . . 8 𝑡𝑏
21 nfcv 2764 . . . . . . . 8 𝑡 ·
22 nfcsb1v 3549 . . . . . . . 8 𝑡𝑎 / 𝑡𝐴
2320, 21, 22nfov 6676 . . . . . . 7 𝑡(𝑏 · 𝑎 / 𝑡𝐴)
24 nfcsb1v 3549 . . . . . . 7 𝑡𝑎 / 𝑡𝐵
2523, 24nfeq 2776 . . . . . 6 𝑡(𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
26 nfcv 2764 . . . . . . . 8 𝑡-𝑏
2726, 21, 22nfov 6676 . . . . . . 7 𝑡(-𝑏 · 𝑎 / 𝑡𝐴)
2827, 24nfeq 2776 . . . . . 6 𝑡(-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
2925, 28nfor 1834 . . . . 5 𝑡((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
3019, 29nfrex 3007 . . . 4 𝑡𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
31 csbeq1a 3542 . . . . . . . 8 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
3231oveq2d 6666 . . . . . . 7 (𝑡 = 𝑎 → (𝑏 · 𝐴) = (𝑏 · 𝑎 / 𝑡𝐴))
33 csbeq1a 3542 . . . . . . 7 (𝑡 = 𝑎𝐵 = 𝑎 / 𝑡𝐵)
3432, 33eqeq12d 2637 . . . . . 6 (𝑡 = 𝑎 → ((𝑏 · 𝐴) = 𝐵 ↔ (𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3531oveq2d 6666 . . . . . . 7 (𝑡 = 𝑎 → (-𝑏 · 𝐴) = (-𝑏 · 𝑎 / 𝑡𝐴))
3635, 33eqeq12d 2637 . . . . . 6 (𝑡 = 𝑎 → ((-𝑏 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3734, 36orbi12d 746 . . . . 5 (𝑡 = 𝑎 → (((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3837rexbidv 3052 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3916, 17, 18, 30, 38cbvrab 3198 . . 3 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)}
40 simp1 1061 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
41 peano2nn0 11333 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
42413ad2ant1 1082 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
43 ovex 6678 . . . . . . . . . 10 (1...(𝑁 + 1)) ∈ V
44 nn0p1nn 11332 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
45 elfz1end 12371 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
4644, 45sylib 208 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
47 mzpproj 37300 . . . . . . . . . 10 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4843, 46, 47sylancr 695 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4948adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
50 eqid 2622 . . . . . . . . 9 (𝑁 + 1) = (𝑁 + 1)
5150rabdiophlem2 37366 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
52 mzpmulmpt 37305 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5349, 51, 52syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
54533adant3 1081 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5550rabdiophlem2 37366 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
56553adant2 1080 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
57 eqrabdioph 37341 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
5842, 54, 56, 57syl3anc 1326 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
59 mzpnegmpt 37307 . . . . . . . . 9 ((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
6049, 59syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
61 mzpmulmpt 37305 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
6260, 51, 61syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
63623adant3 1081 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
64 eqrabdioph 37341 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
6542, 63, 56, 64syl3anc 1326 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
66 orrabdioph 37345 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)) ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
6758, 65, 66syl2anc 693 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
68 oveq1 6657 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
6968eqeq1d 2624 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
70 negeq 10273 . . . . . . . 8 (𝑏 = (𝑐‘(𝑁 + 1)) → -𝑏 = -(𝑐‘(𝑁 + 1)))
7170oveq1d 6665 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (-𝑏 · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
7271eqeq1d 2624 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
7369, 72orbi12d 746 . . . . 5 (𝑏 = (𝑐‘(𝑁 + 1)) → (((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
74 csbeq1 3536 . . . . . . . 8 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
7574oveq2d 6666 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
76 csbeq1 3536 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐵 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)
7775, 76eqeq12d 2637 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
7874oveq2d 6666 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
7978, 76eqeq12d 2637 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
8077, 79orbi12d 746 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)))
8150, 73, 80rexrabdioph 37358 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8240, 67, 81syl2anc 693 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8339, 82syl5eqel 2705 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} ∈ (Dioph‘𝑁))
8415, 83eqeltrd 2701 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  csb 3533   class class class wbr 4653  cmpt 4729  cres 5116  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  cdvds 14983  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-dvds 14984  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  rmydioph  37581  expdiophlem2  37589
  Copyright terms: Public domain W3C validator