Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 37340
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 4747 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
32nfel1 2779 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1828 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 11386 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 11398 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 7900 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)))
85, 6, 7mp2an 708 . . . . . . . . . . . . 13 (ℕ0𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁))
98sseli 3599 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) → 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)))
109adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)))
11 mzpf 37299 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
12 mptfcl 37283 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 445 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 494 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 750 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2622 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6291 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 693 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2628 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2624 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 450 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 2957 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3120 . . . . . 6 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 208 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2764 . . . . . 6 𝑡(ℕ0𝑚 (1...𝑁))
26 nfcv 2764 . . . . . 6 𝑎(ℕ0𝑚 (1...𝑁))
27 nfv 1843 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6199 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2778 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveq2 6191 . . . . . . 7 (𝑡 = 𝑎 → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎))
3130eqeq1d 2624 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3225, 26, 27, 29, 31cbvrab 3198 . . . . 5 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3324, 32syl6eq 2672 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
34 df-rab 2921 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3533, 34syl6eq 2672 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
36 elmapi 7879 . . . . . . . . . 10 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
37 ffn 6045 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
38 fnresdm 6000 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3936, 37, 383syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
4039eqeq2d 2632 . . . . . . . 8 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
41 equcom 1945 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4240, 41syl6bb 276 . . . . . . 7 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4342anbi1d 741 . . . . . 6 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4443rexbiia 3040 . . . . 5 (∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
45 fveq2 6191 . . . . . . 7 (𝑏 = 𝑎 → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎))
4645eqeq1d 2624 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4746ceqsrexbv 3337 . . . . 5 (∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4844, 47bitr2i 265 . . . 4 ((𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4948abbii 2739 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
5035, 49syl6eq 2672 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
51 simpl 473 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
52 nn0z 11400 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
53 uzid 11702 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5452, 53syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5554adantr 481 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
56 simpr 477 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
57 eldioph 37321 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5851, 55, 56, 57syl3anc 1326 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5950, 58eqeltrd 2701 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  cmpt 4729  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  1c1 9937  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eqrabdioph  37341  0dioph  37342  vdioph  37343  rmydioph  37581  expdioph  37590
  Copyright terms: Public domain W3C validator