| Step | Hyp | Ref
| Expression |
| 1 | | 0elon 5778 |
. . . 4
⊢ ∅
∈ On |
| 2 | | rdgval 7516 |
. . . 4
⊢ (∅
∈ On → (rec(𝐹,
𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅))) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢
(rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)) |
| 4 | | res0 5400 |
. . . 4
⊢
(rec(𝐹, 𝐼) ↾ ∅) =
∅ |
| 5 | 4 | fveq2i 6194 |
. . 3
⊢ ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘(rec(𝐹, 𝐼) ↾ ∅)) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 6 | 3, 5 | eqtri 2644 |
. 2
⊢
(rec(𝐹, 𝐼)‘∅) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) |
| 7 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑔 = ∅ → (𝑔 = ∅ ↔ ∅ =
∅)) |
| 8 | | dmeq 5324 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) |
| 9 | | limeq 5735 |
. . . . . . . . . 10
⊢ (dom
𝑔 = dom ∅ → (Lim
dom 𝑔 ↔ Lim dom
∅)) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → (Lim dom 𝑔 ↔ Lim dom
∅)) |
| 11 | | rneq 5351 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → ran 𝑔 = ran ∅) |
| 12 | 11 | unieqd 4446 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → ∪ ran 𝑔 = ∪ ran
∅) |
| 13 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → 𝑔 = ∅) |
| 14 | 8 | unieqd 4446 |
. . . . . . . . . . 11
⊢ (𝑔 = ∅ → ∪ dom 𝑔 = ∪ dom
∅) |
| 15 | 13, 14 | fveq12d 6197 |
. . . . . . . . . 10
⊢ (𝑔 = ∅ → (𝑔‘∪ dom 𝑔) = (∅‘∪ dom ∅)) |
| 16 | 15 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → (𝐹‘(𝑔‘∪ dom 𝑔)) = (𝐹‘(∅‘∪ dom ∅))) |
| 17 | 10, 12, 16 | ifbieq12d 4113 |
. . . . . . . 8
⊢ (𝑔 = ∅ → if(Lim dom
𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))) = if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) |
| 18 | 7, 17 | ifbieq2d 4111 |
. . . . . . 7
⊢ (𝑔 = ∅ → if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) = if(∅ = ∅,
𝐼, if(Lim dom ∅,
∪ ran ∅, (𝐹‘(∅‘∪ dom ∅))))) |
| 19 | 18 | eleq1d 2686 |
. . . . . 6
⊢ (𝑔 = ∅ → (if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) ∈ V ↔ if(∅
= ∅, 𝐼, if(Lim dom
∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) ∈ V)) |
| 20 | | eqid 2622 |
. . . . . . 7
⊢ (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) |
| 21 | 20 | dmmpt 5630 |
. . . . . 6
⊢ dom
(𝑔 ∈ V ↦
if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) = {𝑔 ∈ V ∣ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))) ∈ V} |
| 22 | 19, 21 | elrab2 3366 |
. . . . 5
⊢ (∅
∈ dom (𝑔 ∈ V
↦ if(𝑔 = ∅,
𝐼, if(Lim dom 𝑔, ∪
ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) ↔ (∅ ∈ V
∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) ∈ V)) |
| 23 | | eqid 2622 |
. . . . . . . . 9
⊢ ∅ =
∅ |
| 24 | 23 | iftruei 4093 |
. . . . . . . 8
⊢
if(∅ = ∅, 𝐼, if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) = 𝐼 |
| 25 | 24 | eleq1i 2692 |
. . . . . . 7
⊢
(if(∅ = ∅, 𝐼, if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) ∈ V ↔ 𝐼 ∈ V) |
| 26 | 25 | biimpi 206 |
. . . . . 6
⊢
(if(∅ = ∅, 𝐼, if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) ∈ V → 𝐼 ∈ V) |
| 27 | 26 | adantl 482 |
. . . . 5
⊢ ((∅
∈ V ∧ if(∅ = ∅, 𝐼, if(Lim dom ∅, ∪ ran ∅, (𝐹‘(∅‘∪ dom ∅)))) ∈ V) → 𝐼 ∈ V) |
| 28 | 22, 27 | sylbi 207 |
. . . 4
⊢ (∅
∈ dom (𝑔 ∈ V
↦ if(𝑔 = ∅,
𝐼, if(Lim dom 𝑔, ∪
ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) → 𝐼 ∈ V) |
| 29 | 28 | con3i 150 |
. . 3
⊢ (¬
𝐼 ∈ V → ¬
∅ ∈ dom (𝑔
∈ V ↦ if(𝑔 =
∅, 𝐼, if(Lim dom
𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| 30 | | ndmfv 6218 |
. . 3
⊢ (¬
∅ ∈ dom (𝑔
∈ V ↦ if(𝑔 =
∅, 𝐼, if(Lim dom
𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔))))) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) =
∅) |
| 31 | 29, 30 | syl 17 |
. 2
⊢ (¬
𝐼 ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))‘∅) =
∅) |
| 32 | 6, 31 | syl5eq 2668 |
1
⊢ (¬
𝐼 ∈ V →
(rec(𝐹, 𝐼)‘∅) = ∅) |