![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ress0 | Structured version Visualization version GIF version |
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ress0 | ⊢ (∅ ↾s 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
3 | eqid 2622 | . . . 4 ⊢ (∅ ↾s 𝐴) = (∅ ↾s 𝐴) | |
4 | base0 15912 | . . . 4 ⊢ ∅ = (Base‘∅) | |
5 | 3, 4 | ressid2 15928 | . . 3 ⊢ ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅) |
6 | 1, 2, 5 | mp3an12 1414 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
7 | reldmress 15926 | . . 3 ⊢ Rel dom ↾s | |
8 | 7 | ovprc2 6685 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
9 | 6, 8 | pm2.61i 176 | 1 ⊢ (∅ ↾s 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 (class class class)co 6650 ↾s cress 15858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-slot 15861 df-base 15863 df-ress 15865 |
This theorem is referenced by: ressress 15938 invrfval 18673 mplval 19428 ply1val 19564 dsmmval 20078 dsmmval2 20080 resvsca 29830 |
Copyright terms: Public domain | W3C validator |