MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0 Structured version   Visualization version   GIF version

Theorem ress0 15934
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
ress0 (∅ ↾s 𝐴) = ∅

Proof of Theorem ress0
StepHypRef Expression
1 0ss 3972 . . 3 ∅ ⊆ 𝐴
2 0ex 4790 . . 3 ∅ ∈ V
3 eqid 2622 . . . 4 (∅ ↾s 𝐴) = (∅ ↾s 𝐴)
4 base0 15912 . . . 4 ∅ = (Base‘∅)
53, 4ressid2 15928 . . 3 ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅)
61, 2, 5mp3an12 1414 . 2 (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
7 reldmress 15926 . . 3 Rel dom ↾s
87ovprc2 6685 . 2 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
96, 8pm2.61i 176 1 (∅ ↾s 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  (class class class)co 6650  s cress 15858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-ress 15865
This theorem is referenced by:  ressress  15938  invrfval  18673  mplval  19428  ply1val  19564  dsmmval  20078  dsmmval2  20080  resvsca  29830
  Copyright terms: Public domain W3C validator