MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 19564
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6191 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3syl6eqr 2674 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 6658 . . . . . 6 (𝑟 = 𝑅 → (1𝑜 mPoly 𝑟) = (1𝑜 mPoly 𝑅))
65fveq2d 6195 . . . . 5 (𝑟 = 𝑅 → (Base‘(1𝑜 mPoly 𝑟)) = (Base‘(1𝑜 mPoly 𝑅)))
74, 6oveq12d 6668 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟))) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
8 df-ply1 19552 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟))))
9 ovex 6678 . . . 4 (𝑆s (Base‘(1𝑜 mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 6282 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
11 fvprc 6185 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 15934 . . . . 5 (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))) = ∅
1311, 12syl6eqr 2674 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))))
14 fvprc 6185 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14syl5eq 2668 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 6665 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1𝑜 mPoly 𝑅))) = (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))))
1713, 16eqtr4d 2659 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
1810, 17pm2.61i 176 . 2 (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))
191, 18eqtri 2644 1 𝑃 = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  Basecbs 15857  s cress 15858   mPoly cmpl 19353  PwSer1cps1 19545  Poly1cpl1 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-ress 15865  df-ply1 19552
This theorem is referenced by:  ply1bas  19565  ply1crng  19568  ply1assa  19569  ply1bascl  19573  ply1plusg  19595  ply1vsca  19596  ply1mulr  19597  ply1ring  19618  ply1lmod  19622  ply1sca  19623
  Copyright terms: Public domain W3C validator