| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . 3
⊢
(Base‘𝐼) =
(Base‘𝐼) |
| 2 | | eqid 2622 |
. . 3
⊢
(.r‘𝐼) = (.r‘𝐼) |
| 3 | 1, 2 | isringrng 41881 |
. 2
⊢ (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 4 | | domnring 19296 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 5 | 4 | anim1i 592 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿)) |
| 6 | | lidlabl.l |
. . . . 5
⊢ 𝐿 = (LIdeal‘𝑅) |
| 7 | | lidlabl.i |
. . . . 5
⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| 8 | 6, 7 | lidlrng 41927 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) |
| 9 | 5, 8 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) |
| 10 | | ibar 525 |
. . . . . 6
⊢ (𝐼 ∈ Rng → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)))) |
| 11 | 10 | bicomd 213 |
. . . . 5
⊢ (𝐼 ∈ Rng → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 12 | 11 | adantl 482 |
. . . 4
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 13 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 14 | 7, 13 | ressmulr 16006 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
| 15 | 14 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
| 16 | 15 | oveqd 6667 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐿 → (𝑥(.r‘𝐼)𝑦) = (𝑥(.r‘𝑅)𝑦)) |
| 17 | 16 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → ((𝑥(.r‘𝐼)𝑦) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦)) |
| 18 | 15 | oveqd 6667 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐿 → (𝑦(.r‘𝐼)𝑥) = (𝑦(.r‘𝑅)𝑥)) |
| 19 | 18 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → ((𝑦(.r‘𝐼)𝑥) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 20 | 17, 19 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ 𝐿 → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 21 | 20 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 22 | 21 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 23 | 22 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 24 | | simp-4l 806 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑅 ∈ Domn) |
| 25 | 6, 7 | lidlbas 41923 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| 26 | 25 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) ∈ 𝐿 ↔ 𝑈 ∈ 𝐿)) |
| 27 | 26 | ibir 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
| 28 | 27 | ad3antlr 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) ∈ 𝐿) |
| 29 | 25 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (Base‘𝐼) = 𝑈) |
| 30 | 29 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } ↔ 𝑈 = { 0 })) |
| 31 | 30 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } → 𝑈 = { 0 })) |
| 32 | 31 | necon3bd 2808 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (¬ 𝑈 = { 0 } → (Base‘𝐼) ≠ { 0 })) |
| 33 | 32 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) ≠ { 0
}) |
| 34 | 28, 33 | jca 554 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
((Base‘𝐼) ∈
𝐿 ∧ (Base‘𝐼) ≠ { 0 })) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 })) |
| 36 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ (Base‘𝐼)) |
| 37 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 38 | | zlidlring.0 |
. . . . . . . . . . . . . . . 16
⊢ 0 =
(0g‘𝑅) |
| 39 | 6, 13, 37, 38 | lidldomn1 41921 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Domn ∧
((Base‘𝐼) ∈
𝐿 ∧ (Base‘𝐼) ≠ { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
| 40 | 24, 35, 36, 39 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
| 41 | 23, 40 | sylbid 230 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
| 42 | 41 | imp 445 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → 𝑥 = (1r‘𝑅)) |
| 43 | 25 | ad3antlr 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) = 𝑈) |
| 44 | 43 | eleq2d 2687 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) ↔ 𝑥 ∈ 𝑈)) |
| 45 | 44 | biimpd 219 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) → 𝑥 ∈ 𝑈)) |
| 46 | 45 | imp 445 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ 𝑈) |
| 47 | 46 | adantr 481 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → 𝑥 ∈ 𝑈) |
| 48 | 42, 47 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (1r‘𝑅) ∈ 𝑈) |
| 49 | 48 | ex 450 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → (1r‘𝑅) ∈ 𝑈)) |
| 50 | 49 | rexlimdva 3031 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → (1r‘𝑅) ∈ 𝑈)) |
| 51 | 50 | impancom 456 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } →
(1r‘𝑅)
∈ 𝑈)) |
| 52 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿)) |
| 53 | | zlidlring.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 54 | 6, 53, 37 | lidl1el 19218 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((1r‘𝑅) ∈ 𝑈 ↔ 𝑈 = 𝐵)) |
| 55 | 52, 54 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) →
((1r‘𝑅)
∈ 𝑈 ↔ 𝑈 = 𝐵)) |
| 56 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → ((1r‘𝑅) ∈ 𝑈 ↔ 𝑈 = 𝐵)) |
| 57 | 51, 56 | sylibd 229 |
. . . . . . 7
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → 𝑈 = 𝐵)) |
| 58 | 57 | orrd 393 |
. . . . . 6
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
| 59 | 58 | ex 450 |
. . . . 5
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
| 60 | 6, 7, 53, 38 | zlidlring 41928 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) |
| 61 | 3 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝐼 ∈ Ring → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
| 63 | 62 | ex 450 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 64 | 4, 63 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 65 | 64 | ad2antrr 762 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 66 | 5 | anim1i 592 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng)) |
| 67 | 53, 13 | ringideu 18565 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 68 | | reurex 3160 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 70 | 69 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 71 | 70 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
| 72 | 7, 53 | ressbas 15930 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ 𝐵) = (Base‘𝐼)) |
| 73 | 72 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈 ∩ 𝐵) = (Base‘𝐼)) |
| 74 | | ineq1 3807 |
. . . . . . . . . . . . 13
⊢ (𝑈 = 𝐵 → (𝑈 ∩ 𝐵) = (𝐵 ∩ 𝐵)) |
| 75 | | inidm 3822 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∩ 𝐵) = 𝐵 |
| 76 | 74, 75 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑈 = 𝐵 → (𝑈 ∩ 𝐵) = 𝐵) |
| 77 | 76 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈 ∩ 𝐵) = 𝐵) |
| 78 | 73, 77 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (Base‘𝐼) = 𝐵) |
| 79 | 20 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 80 | 78, 79 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 81 | 78, 80 | rexeqbidv 3153 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
| 82 | 71, 81 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
| 83 | 82 | ex 450 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 84 | 66, 83 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 85 | 65, 84 | jaod 395 |
. . . . 5
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝑈 = { 0 } ∨ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
| 86 | 59, 85 | impbid 202 |
. . . 4
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
| 87 | 12, 86 | bitrd 268 |
. . 3
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
| 88 | 9, 87 | mpdan 702 |
. 2
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
| 89 | 3, 88 | syl5bb 272 |
1
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |