MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Visualization version   GIF version

Theorem qbtwnre 12030
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 10521 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 10345 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 nnrecl 11290 . . . . . . 7 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
42, 3sylan 488 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
54ex 450 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
65ancoms 469 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
71, 6sylbid 230 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
8 nnre 11027 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
98adantl 482 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
10 simplr 792 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ ℝ)
119, 10remulcld 10070 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝐵) ∈ ℝ)
12 peano2rem 10348 . . . . . . 7 ((𝑦 · 𝐵) ∈ ℝ → ((𝑦 · 𝐵) − 1) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
14 zbtwnre 11786 . . . . . 6 (((𝑦 · 𝐵) − 1) ∈ ℝ → ∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
15 reurex 3160 . . . . . 6 (∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
1613, 14, 153syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
17 znq 11792 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 / 𝑦) ∈ ℚ)
1817ancoms 469 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 / 𝑦) ∈ ℚ)
1918adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 / 𝑦) ∈ ℚ)
20 an32 839 . . . . . . . . . 10 (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) ↔ ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
218ad2antrl 764 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℝ)
22 simpll 790 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℝ)
2321, 22remulcld 10070 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐴) ∈ ℝ)
2413adantrr 753 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
25 zre 11381 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2625ad2antll 765 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℝ)
27 ltletr 10129 . . . . . . . . . . . . 13 (((𝑦 · 𝐴) ∈ ℝ ∧ ((𝑦 · 𝐵) − 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2823, 24, 26, 27syl3anc 1326 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2921recnd 10068 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℂ)
30 simplr 792 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℝ)
3130recnd 10068 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℂ)
3222recnd 10068 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℂ)
3329, 31, 32subdid 10486 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · (𝐵𝐴)) = ((𝑦 · 𝐵) − (𝑦 · 𝐴)))
3433breq2d 4665 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (1 < (𝑦 · (𝐵𝐴)) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
35 1red 10055 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 1 ∈ ℝ)
3630, 22resubcld 10458 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝐵𝐴) ∈ ℝ)
37 nngt0 11049 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 < 𝑦)
3837ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 0 < 𝑦)
39 ltdivmul 10898 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4035, 36, 21, 38, 39syl112anc 1330 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4111adantrr 753 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℝ)
42 ltsub13 10509 . . . . . . . . . . . . . . . 16 (((𝑦 · 𝐴) ∈ ℝ ∧ (𝑦 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4323, 41, 35, 42syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4434, 40, 433bitr4rd 301 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ (1 / 𝑦) < (𝐵𝐴)))
4544anbi1d 741 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ ((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧)))
46 ancom 466 . . . . . . . . . . . . 13 (((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)))
4745, 46syl6bb 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴))))
48 ltmuldiv2 10897 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4922, 26, 21, 38, 48syl112anc 1330 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
5028, 47, 493imtr3d 282 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) → 𝐴 < (𝑧 / 𝑦)))
5141recnd 10068 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℂ)
52 ax-1cn 9994 . . . . . . . . . . . . . . 15 1 ∈ ℂ
53 npcan 10290 . . . . . . . . . . . . . . 15 (((𝑦 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5451, 52, 53sylancl 694 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5554breq2d 4665 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ 𝑧 < (𝑦 · 𝐵)))
56 ltdivmul 10898 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5726, 30, 21, 38, 56syl112anc 1330 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5855, 57bitr4d 271 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ (𝑧 / 𝑦) < 𝐵))
5958biimpd 219 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) → (𝑧 / 𝑦) < 𝐵))
6050, 59anim12d 586 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6120, 60syl5bi 232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
62 breq2 4657 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝐴 < 𝑥𝐴 < (𝑧 / 𝑦)))
63 breq1 4656 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝑥 < 𝐵 ↔ (𝑧 / 𝑦) < 𝐵))
6462, 63anbi12d 747 . . . . . . . . . 10 (𝑥 = (𝑧 / 𝑦) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6564rspcev 3309 . . . . . . . . 9 (((𝑧 / 𝑦) ∈ ℚ ∧ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
6619, 61, 65syl6an 568 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
6766expd 452 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6867expr 643 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℤ → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))))
6968rexlimdv 3030 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
7016, 69mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7170rexlimdva 3031 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
727, 71syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
73723impia 1261 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  ∃!wreu 2914   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  cq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789
This theorem is referenced by:  qbtwnxr  12031  qsqueeze  12032  nmoleub2lem3  22915  mbfaddlem  23427  rpnnen3lem  37598
  Copyright terms: Public domain W3C validator