![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltx | Structured version Visualization version GIF version |
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
eltx | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
2 | 1 | txval 21367 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)))) |
3 | 2 | eleq2d 2687 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))))) |
4 | 1 | txbasex 21369 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V) |
5 | eltg2b 20763 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆))) |
7 | vex 3203 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3203 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpex 6962 | . . . . . 6 ⊢ (𝑥 × 𝑦) ∈ V |
10 | 9 | rgen2w 2925 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V |
11 | eqid 2622 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦)) | |
12 | eleq2 2690 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑝 ∈ 𝑧 ↔ 𝑝 ∈ (𝑥 × 𝑦))) | |
13 | sseq1 3626 | . . . . . . 7 ⊢ (𝑧 = (𝑥 × 𝑦) → (𝑧 ⊆ 𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆)) | |
14 | 12, 13 | anbi12d 747 | . . . . . 6 ⊢ (𝑧 = (𝑥 × 𝑦) → ((𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
15 | 11, 14 | rexrnmpt2 6776 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
16 | 10, 15 | ax-mp 5 | . . . 4 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
17 | 16 | ralbii 2980 | . . 3 ⊢ (∀𝑝 ∈ 𝑆 ∃𝑧 ∈ ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))(𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)) |
18 | 6, 17 | syl6bb 276 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (topGen‘ran (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
19 | 3, 18 | bitrd 268 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 × cxp 5112 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 topGenctg 16098 ×t ctx 21363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-topgen 16104 df-tx 21365 |
This theorem is referenced by: txcls 21407 txcnpi 21411 txdis 21435 txindis 21437 txdis1cn 21438 txlly 21439 txnlly 21440 txtube 21443 txcmplem1 21444 hausdiag 21448 tx1stc 21453 qustgplem 21924 txomap 29901 cvmlift2lem10 31294 |
Copyright terms: Public domain | W3C validator |