Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   GIF version

Theorem rnfdmpr 41300
Description: The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))

Proof of Theorem rnfdmpr
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6242 . . . 4 (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
21adantl 482 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
3 fveq2 6191 . . . . . . . 8 (𝑖 = 𝑋 → (𝐹𝑖) = (𝐹𝑋))
43eqeq2d 2632 . . . . . . 7 (𝑖 = 𝑋 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑋)))
54abbidv 2741 . . . . . 6 (𝑖 = 𝑋 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑋)})
6 fveq2 6191 . . . . . . . 8 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
76eqeq2d 2632 . . . . . . 7 (𝑖 = 𝑌 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑌)))
87abbidv 2741 . . . . . 6 (𝑖 = 𝑌 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑌)})
95, 8iunxprg 4607 . . . . 5 ((𝑋𝑉𝑌𝑊) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
109adantr 481 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
11 iunab 4566 . . . 4 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)}
12 df-sn 4178 . . . . . . 7 {(𝐹𝑋)} = {𝑥𝑥 = (𝐹𝑋)}
1312eqcomi 2631 . . . . . 6 {𝑥𝑥 = (𝐹𝑋)} = {(𝐹𝑋)}
14 df-sn 4178 . . . . . . 7 {(𝐹𝑌)} = {𝑥𝑥 = (𝐹𝑌)}
1514eqcomi 2631 . . . . . 6 {𝑥𝑥 = (𝐹𝑌)} = {(𝐹𝑌)}
1613, 15uneq12i 3765 . . . . 5 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
17 df-pr 4180 . . . . 5 {(𝐹𝑋), (𝐹𝑌)} = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
1816, 17eqtr4i 2647 . . . 4 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = {(𝐹𝑋), (𝐹𝑌)}
1910, 11, 183eqtr3g 2679 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)} = {(𝐹𝑋), (𝐹𝑌)})
202, 19eqtrd 2656 . 2 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2120ex 450 1 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  cun 3572  {csn 4177  {cpr 4179   ciun 4520  ran crn 5115   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  imarnf1pr  41301
  Copyright terms: Public domain W3C validator