Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   Unicode version

Theorem rnfdmpr 41300
Description: The range of a one-to-one function  F of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( F  Fn  { X ,  Y }  ->  ran  F  =  {
( F `  X
) ,  ( F `
 Y ) } ) )

Proof of Theorem rnfdmpr
Dummy variables  x  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6242 . . . 4  |-  ( F  Fn  { X ,  Y }  ->  ran  F  =  { x  |  E. i  e.  { X ,  Y } x  =  ( F `  i
) } )
21adantl 482 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  F  Fn  { X ,  Y }
)  ->  ran  F  =  { x  |  E. i  e.  { X ,  Y } x  =  ( F `  i
) } )
3 fveq2 6191 . . . . . . . 8  |-  ( i  =  X  ->  ( F `  i )  =  ( F `  X ) )
43eqeq2d 2632 . . . . . . 7  |-  ( i  =  X  ->  (
x  =  ( F `
 i )  <->  x  =  ( F `  X ) ) )
54abbidv 2741 . . . . . 6  |-  ( i  =  X  ->  { x  |  x  =  ( F `  i ) }  =  { x  |  x  =  ( F `  X ) } )
6 fveq2 6191 . . . . . . . 8  |-  ( i  =  Y  ->  ( F `  i )  =  ( F `  Y ) )
76eqeq2d 2632 . . . . . . 7  |-  ( i  =  Y  ->  (
x  =  ( F `
 i )  <->  x  =  ( F `  Y ) ) )
87abbidv 2741 . . . . . 6  |-  ( i  =  Y  ->  { x  |  x  =  ( F `  i ) }  =  { x  |  x  =  ( F `  Y ) } )
95, 8iunxprg 4607 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  U_ i  e.  { X ,  Y }  { x  |  x  =  ( F `  i ) }  =  ( { x  |  x  =  ( F `  X ) }  u.  { x  |  x  =  ( F `  Y
) } ) )
109adantr 481 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  F  Fn  { X ,  Y }
)  ->  U_ i  e. 
{ X ,  Y }  { x  |  x  =  ( F `  i ) }  =  ( { x  |  x  =  ( F `  X ) }  u.  { x  |  x  =  ( F `  Y
) } ) )
11 iunab 4566 . . . 4  |-  U_ i  e.  { X ,  Y }  { x  |  x  =  ( F `  i ) }  =  { x  |  E. i  e.  { X ,  Y } x  =  ( F `  i
) }
12 df-sn 4178 . . . . . . 7  |-  { ( F `  X ) }  =  { x  |  x  =  ( F `  X ) }
1312eqcomi 2631 . . . . . 6  |-  { x  |  x  =  ( F `  X ) }  =  { ( F `  X ) }
14 df-sn 4178 . . . . . . 7  |-  { ( F `  Y ) }  =  { x  |  x  =  ( F `  Y ) }
1514eqcomi 2631 . . . . . 6  |-  { x  |  x  =  ( F `  Y ) }  =  { ( F `  Y ) }
1613, 15uneq12i 3765 . . . . 5  |-  ( { x  |  x  =  ( F `  X
) }  u.  {
x  |  x  =  ( F `  Y
) } )  =  ( { ( F `
 X ) }  u.  { ( F `
 Y ) } )
17 df-pr 4180 . . . . 5  |-  { ( F `  X ) ,  ( F `  Y ) }  =  ( { ( F `  X ) }  u.  { ( F `  Y
) } )
1816, 17eqtr4i 2647 . . . 4  |-  ( { x  |  x  =  ( F `  X
) }  u.  {
x  |  x  =  ( F `  Y
) } )  =  { ( F `  X ) ,  ( F `  Y ) }
1910, 11, 183eqtr3g 2679 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  F  Fn  { X ,  Y }
)  ->  { x  |  E. i  e.  { X ,  Y }
x  =  ( F `
 i ) }  =  { ( F `
 X ) ,  ( F `  Y
) } )
202, 19eqtrd 2656 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  F  Fn  { X ,  Y }
)  ->  ran  F  =  { ( F `  X ) ,  ( F `  Y ) } )
2120ex 450 1  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( F  Fn  { X ,  Y }  ->  ran  F  =  {
( F `  X
) ,  ( F `
 Y ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    u. cun 3572   {csn 4177   {cpr 4179   U_ciun 4520   ran crn 5115    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  imarnf1pr  41301
  Copyright terms: Public domain W3C validator