Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmval Structured version   Visualization version   GIF version

Theorem rnghmval 41891
Description: The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020.)
Hypotheses
Ref Expression
isrnghm.b 𝐵 = (Base‘𝑅)
isrnghm.t · = (.r𝑅)
isrnghm.m = (.r𝑆)
rnghmval.c 𝐶 = (Base‘𝑆)
rnghmval.p + = (+g𝑅)
rnghmval.a = (+g𝑆)
Assertion
Ref Expression
rnghmval ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
Distinct variable groups:   𝐵,𝑓,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝐶,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦,𝑓)   (𝑥,𝑦,𝑓)   · (𝑥,𝑦,𝑓)   (𝑥,𝑦,𝑓)

Proof of Theorem rnghmval
Dummy variables 𝑟 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghomo 41887 . . 3 RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
21a1i 11 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))}))
3 fveq2 6191 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 isrnghm.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4syl6eqr 2674 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
65csbeq1d 3540 . . . . 5 (𝑟 = 𝑅(Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = 𝐵 / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
7 fveq2 6191 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
8 rnghmval.c . . . . . . . 8 𝐶 = (Base‘𝑆)
97, 8syl6eqr 2674 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐶)
109csbeq1d 3540 . . . . . 6 (𝑠 = 𝑆(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = 𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
1110csbeq2dv 3992 . . . . 5 (𝑠 = 𝑆𝐵 / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
126, 11sylan9eq 2676 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
1312adantl 482 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
14 fvex 6201 . . . . . . . 8 (Base‘𝑅) ∈ V
154, 14eqeltri 2697 . . . . . . 7 𝐵 ∈ V
16 fvex 6201 . . . . . . . 8 (Base‘𝑆) ∈ V
178, 16eqeltri 2697 . . . . . . 7 𝐶 ∈ V
18 oveq12 6659 . . . . . . . . 9 ((𝑤 = 𝐶𝑣 = 𝐵) → (𝑤𝑚 𝑣) = (𝐶𝑚 𝐵))
1918ancoms 469 . . . . . . . 8 ((𝑣 = 𝐵𝑤 = 𝐶) → (𝑤𝑚 𝑣) = (𝐶𝑚 𝐵))
20 raleq 3138 . . . . . . . . . 10 (𝑣 = 𝐵 → (∀𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
2120raleqbi1dv 3146 . . . . . . . . 9 (𝑣 = 𝐵 → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
2221adantr 481 . . . . . . . 8 ((𝑣 = 𝐵𝑤 = 𝐶) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
2319, 22rabeqbidv 3195 . . . . . . 7 ((𝑣 = 𝐵𝑤 = 𝐶) → {𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
2415, 17, 23csbie2 3563 . . . . . 6 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))}
2524a1i 11 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
26 fveq2 6191 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
27 rnghmval.p . . . . . . . . . . . . 13 + = (+g𝑅)
2826, 27syl6eqr 2674 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (+g𝑟) = + )
2928oveqdr 6674 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
3029fveq2d 6195 . . . . . . . . . 10 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑓‘(𝑥(+g𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
31 fveq2 6191 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
32 rnghmval.a . . . . . . . . . . . . 13 = (+g𝑆)
3331, 32syl6eqr 2674 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = )
3433adantl 482 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑠 = 𝑆) → (+g𝑠) = )
3534oveqd 6667 . . . . . . . . . 10 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
3630, 35eqeq12d 2637 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
37 fveq2 6191 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
38 isrnghm.t . . . . . . . . . . . . 13 · = (.r𝑅)
3937, 38syl6eqr 2674 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = · )
4039oveqdr 6674 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
4140fveq2d 6195 . . . . . . . . . 10 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑓‘(𝑥(.r𝑟)𝑦)) = (𝑓‘(𝑥 · 𝑦)))
42 fveq2 6191 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (.r𝑠) = (.r𝑆))
43 isrnghm.m . . . . . . . . . . . . 13 = (.r𝑆)
4442, 43syl6eqr 2674 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (.r𝑠) = )
4544adantl 482 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑠 = 𝑆) → (.r𝑠) = )
4645oveqd 6667 . . . . . . . . . 10 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
4741, 46eqeq12d 2637 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
4836, 47anbi12d 747 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))))
4948ralbidv 2986 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (∀𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))))
5049ralbidv 2986 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))))
5150rabbidv 3189 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
5225, 51eqtrd 2656 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
5352adantl 482 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → 𝐵 / 𝑣𝐶 / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
5413, 53eqtrd 2656 . 2 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
55 simpl 473 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → 𝑅 ∈ Rng)
56 simpr 477 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → 𝑆 ∈ Rng)
57 ovex 6678 . . . 4 (𝐶𝑚 𝐵) ∈ V
5857rabex 4813 . . 3 {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ∈ V
5958a1i 11 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ∈ V)
602, 54, 55, 56, 59ovmpt2d 6788 1 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  csb 3533  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Rngcrng 41874   RngHomo crngh 41885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rnghomo 41887
This theorem is referenced by:  isrnghm  41892
  Copyright terms: Public domain W3C validator