![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3991 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ⦋csb 3533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 df-csb 3534 |
This theorem is referenced by: csbeq2i 3993 mpt2mptsx 7233 dmmpt2ssx 7235 fmpt2x 7236 el2mpt2csbcl 7250 offval22 7253 ovmptss 7258 fmpt2co 7260 mpt2sn 7268 mpt2curryd 7395 fvmpt2curryd 7397 cantnffval 8560 fsumcom2 14505 fsumcom2OLD 14506 fprodcom2 14714 fprodcom2OLD 14715 bpolylem 14779 bpolyval 14780 ruclem1 14960 natfval 16606 fucval 16618 evlfval 16857 mpfrcl 19518 pmatcollpw3lem 20588 fsumcn 22673 fsum2cn 22674 dvmptfsum 23738 ttgval 25755 msrfval 31434 poimirlem5 33414 poimirlem6 33415 poimirlem7 33416 poimirlem8 33417 poimirlem10 33419 poimirlem11 33420 poimirlem12 33421 poimirlem15 33424 poimirlem16 33425 poimirlem17 33426 poimirlem18 33427 poimirlem19 33428 poimirlem20 33429 poimirlem21 33430 poimirlem22 33431 poimirlem24 33433 poimirlem26 33435 poimirlem27 33436 cdleme31sde 35673 cdlemeg47rv2 35798 rnghmval 41891 dmmpt2ssx2 42115 |
Copyright terms: Public domain | W3C validator |