Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1l Structured version   Visualization version   GIF version

Theorem rngonegmn1l 33740
Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1 𝐺 = (1st𝑅)
ringneg.2 𝐻 = (2nd𝑅)
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = (inv‘𝐺)
ringneg.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngonegmn1l ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁𝑈)𝐻𝐴))

Proof of Theorem rngonegmn1l
StepHypRef Expression
1 ringneg.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringneg.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5352 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2644 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringneg.2 . . . . . 6 𝐻 = (2nd𝑅)
6 ringneg.5 . . . . . 6 𝑈 = (GId‘𝐻)
74, 5, 6rngo1cl 33738 . . . . 5 (𝑅 ∈ RingOps → 𝑈𝑋)
8 ringneg.4 . . . . . . 7 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 33726 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑁𝑈) ∈ 𝑋)
107, 9mpdan 702 . . . . 5 (𝑅 ∈ RingOps → (𝑁𝑈) ∈ 𝑋)
117, 10jca 554 . . . 4 (𝑅 ∈ RingOps → (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋))
122, 5, 1rngodir 33704 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋𝐴𝑋)) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
13123exp2 1285 . . . . . 6 (𝑅 ∈ RingOps → (𝑈𝑋 → ((𝑁𝑈) ∈ 𝑋 → (𝐴𝑋 → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴))))))
1413imp42 620 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋)) ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
1514an32s 846 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑈𝑋 ∧ (𝑁𝑈) ∈ 𝑋)) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
1611, 15mpidan 704 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)))
17 eqid 2622 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
182, 1, 8, 17rngoaddneg1 33727 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
197, 18mpdan 702 . . . . . 6 (𝑅 ∈ RingOps → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
2019adantr 481 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝑈)) = (GId‘𝐺))
2120oveq1d 6665 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = ((GId‘𝐺)𝐻𝐴))
2217, 1, 2, 5rngolz 33721 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺))
2321, 22eqtrd 2656 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐺(𝑁𝑈))𝐻𝐴) = (GId‘𝐺))
245, 4, 6rngolidm 33736 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)
2524oveq1d 6665 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴)𝐺((𝑁𝑈)𝐻𝐴)) = (𝐴𝐺((𝑁𝑈)𝐻𝐴)))
2616, 23, 253eqtr3rd 2665 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺))
272, 5, 1rngocl 33700 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝑁𝑈) ∈ 𝑋𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
28273expa 1265 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝑁𝑈) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
2928an32s 846 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑁𝑈) ∈ 𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
3010, 29mpidan 704 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈)𝐻𝐴) ∈ 𝑋)
312rngogrpo 33709 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
321, 17, 8grpoinvid1 27382 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ ((𝑁𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3331, 32syl3an1 1359 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ((𝑁𝑈)𝐻𝐴) ∈ 𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3430, 33mpd3an3 1425 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴) = ((𝑁𝑈)𝐻𝐴) ↔ (𝐴𝐺((𝑁𝑈)𝐻𝐴)) = (GId‘𝐺)))
3526, 34mpbird 247 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁𝑈)𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ran crn 5115  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  GrpOpcgr 27343  GIdcgi 27344  invcgn 27345  RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694
This theorem is referenced by:  rngoneglmul  33742  idlnegcl  33821
  Copyright terms: Public domain W3C validator