![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version |
Description: The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 33734 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | 1 | eleq1i 2692 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
4 | mndoismgmOLD 33669 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
5 | mndoisexid 33668 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
6 | 4, 5 | jca 554 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
7 | 3, 6 | sylbi 207 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
9 | elin 3796 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
10 | 8, 9 | sylibr 224 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
11 | eqid 2622 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
13 | 1 | fveq2i 6194 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
14 | 12, 13 | eqtri 2644 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
15 | 11, 14 | iorlid 33657 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
18 | eqid 2622 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
19 | eqid 2622 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
20 | 18, 19 | rngorn1eq 33733 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
21 | eqtr 2641 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
22 | 21 | eleq2d 2687 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
23 | 17, 20, 22 | sylancr 695 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
24 | 16, 23 | mpbird 247 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ran crn 5115 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 GIdcgi 27344 ExId cexid 33643 Magmacmagm 33647 MndOpcmndo 33665 RingOpscrngo 33693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ablo 27399 df-ass 33642 df-exid 33644 df-mgmOLD 33648 df-sgrOLD 33660 df-mndo 33666 df-rngo 33694 |
This theorem is referenced by: rngoueqz 33739 rngonegmn1l 33740 rngonegmn1r 33741 rngoneglmul 33742 rngonegrmul 33743 isdrngo2 33757 rngohomco 33773 rngoisocnv 33780 idlnegcl 33821 1idl 33825 0rngo 33826 smprngopr 33851 prnc 33866 isfldidl 33867 isdmn3 33873 |
Copyright terms: Public domain | W3C validator |