MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rninxp Structured version   Visualization version   Unicode version

Theorem rninxp 5573
Description: Range of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Distinct variable groups:    x, y, A    y, B    x, C, y
Allowed substitution hint:    B( x)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3592 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  A. y  e.  B  y  e.  ran  ( C  |`  A ) )
2 ssrnres 5572 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
3 df-ima 5127 . . . . 5  |-  ( C
" A )  =  ran  ( C  |`  A )
43eleq2i 2693 . . . 4  |-  ( y  e.  ( C " A )  <->  y  e.  ran  ( C  |`  A ) )
5 vex 3203 . . . . 5  |-  y  e. 
_V
65elima 5471 . . . 4  |-  ( y  e.  ( C " A )  <->  E. x  e.  A  x C
y )
74, 6bitr3i 266 . . 3  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x  e.  A  x C
y )
87ralbii 2980 . 2  |-  ( A. y  e.  B  y  e.  ran  ( C  |`  A )  <->  A. y  e.  B  E. x  e.  A  x C
y )
91, 2, 83bitr3i 290 1  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dminxp  5574  fncnv  5962  exfo  6377  brdom3  9350  brdom5  9351  brdom4  9352
  Copyright terms: Public domain W3C validator