MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpid Structured version   Visualization version   GIF version

Theorem rnxpid 5567
Description: The range of a square Cartesian product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
StepHypRef Expression
1 rn0 5377 . . 3 ran ∅ = ∅
2 xpeq2 5129 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅))
3 xp0 5552 . . . . 5 (𝐴 × ∅) = ∅
42, 3syl6eq 2672 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
54rneqd 5353 . . 3 (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅)
6 id 22 . . 3 (𝐴 = ∅ → 𝐴 = ∅)
71, 5, 63eqtr4a 2682 . 2 (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴)
8 rnxp 5564 . 2 (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴)
97, 8pm2.61ine 2877 1 ran (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  c0 3915   × cxp 5112  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  sofld  5581  fpwwe2lem13  9464  ustimasn  22032  utopbas  22039  restutop  22041  ovoliunlem1  23270  metideq  29936  poimirlem3  33412  mblfinlem1  33446  rtrclex  37924
  Copyright terms: Public domain W3C validator