MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem1 Structured version   Visualization version   GIF version

Theorem ovoliunlem1 23270
Description: Lemma for ovoliun 23273. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
ovoliun.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
ovoliun.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ovoliun.h 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
ovoliun.j (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
ovoliun.f (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
ovoliun.x1 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
ovoliun.x2 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
ovoliun.k (𝜑𝐾 ∈ ℕ)
ovoliun.l1 (𝜑𝐿 ∈ ℤ)
ovoliun.l2 (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿)
Assertion
Ref Expression
ovoliunlem1 (𝜑 → (𝑈𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐵   𝑘,𝐹,𝑛   𝑤,𝑘,𝐽,𝑛   𝑛,𝐾,𝑤   𝑘,𝐿,𝑛,𝑤   𝑛,𝐻   𝜑,𝑘,𝑛   𝑆,𝑘   𝑘,𝐺   𝑇,𝑘   𝑛,𝐺   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑛)   𝐵(𝑤)   𝑆(𝑤,𝑛)   𝑇(𝑤)   𝑈(𝑤,𝑘,𝑛)   𝐹(𝑤)   𝐺(𝑤)   𝐻(𝑤,𝑘)   𝐾(𝑘)

Proof of Theorem ovoliunlem1
Dummy variables 𝑗 𝑚 𝑥 𝑦 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . 9 (𝑗 = (𝐽𝑚) → (1st𝑗) = (1st ‘(𝐽𝑚)))
21fveq2d 6195 . . . . . . . 8 (𝑗 = (𝐽𝑚) → (𝐹‘(1st𝑗)) = (𝐹‘(1st ‘(𝐽𝑚))))
3 fveq2 6191 . . . . . . . 8 (𝑗 = (𝐽𝑚) → (2nd𝑗) = (2nd ‘(𝐽𝑚)))
42, 3fveq12d 6197 . . . . . . 7 (𝑗 = (𝐽𝑚) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
54fveq2d 6195 . . . . . 6 (𝑗 = (𝐽𝑚) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
64fveq2d 6195 . . . . . 6 (𝑗 = (𝐽𝑚) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
75, 6oveq12d 6668 . . . . 5 (𝑗 = (𝐽𝑚) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
8 fzfid 12772 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
9 ovoliun.j . . . . . . 7 (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
10 f1of1 6136 . . . . . . 7 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ–1-1→(ℕ × ℕ))
119, 10syl 17 . . . . . 6 (𝜑𝐽:ℕ–1-1→(ℕ × ℕ))
12 elfznn 12370 . . . . . . 7 (𝑚 ∈ (1...𝐾) → 𝑚 ∈ ℕ)
1312ssriv 3607 . . . . . 6 (1...𝐾) ⊆ ℕ
14 f1ores 6151 . . . . . 6 ((𝐽:ℕ–1-1→(ℕ × ℕ) ∧ (1...𝐾) ⊆ ℕ) → (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾)))
1511, 13, 14sylancl 694 . . . . 5 (𝜑 → (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾)))
16 fvres 6207 . . . . . 6 (𝑚 ∈ (1...𝐾) → ((𝐽 ↾ (1...𝐾))‘𝑚) = (𝐽𝑚))
1716adantl 482 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → ((𝐽 ↾ (1...𝐾))‘𝑚) = (𝐽𝑚))
18 inss2 3834 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
19 ovoliun.f . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
2019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
21 imassrn 5477 . . . . . . . . . . . . . . 15 (𝐽 “ (1...𝐾)) ⊆ ran 𝐽
22 f1of 6137 . . . . . . . . . . . . . . . . 17 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ⟶(ℕ × ℕ))
239, 22syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽:ℕ⟶(ℕ × ℕ))
24 frn 6053 . . . . . . . . . . . . . . . 16 (𝐽:ℕ⟶(ℕ × ℕ) → ran 𝐽 ⊆ (ℕ × ℕ))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐽 ⊆ (ℕ × ℕ))
2621, 25syl5ss 3614 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ))
2726sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝑗 ∈ (ℕ × ℕ))
28 xp1st 7198 . . . . . . . . . . . . 13 (𝑗 ∈ (ℕ × ℕ) → (1st𝑗) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ ℕ)
3020, 29ffvelrnd 6360 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (𝐹‘(1st𝑗)) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
31 reex 10027 . . . . . . . . . . . . . 14 ℝ ∈ V
3231, 31xpex 6962 . . . . . . . . . . . . 13 (ℝ × ℝ) ∈ V
3332inex2 4800 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ∈ V
34 nnex 11026 . . . . . . . . . . . 12 ℕ ∈ V
3533, 34elmap 7886 . . . . . . . . . . 11 ((𝐹‘(1st𝑗)) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹‘(1st𝑗)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3630, 35sylib 208 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (𝐹‘(1st𝑗)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 xp2nd 7199 . . . . . . . . . . 11 (𝑗 ∈ (ℕ × ℕ) → (2nd𝑗) ∈ ℕ)
3827, 37syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (2nd𝑗) ∈ ℕ)
3936, 38ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ ( ≤ ∩ (ℝ × ℝ)))
4018, 39sseldi 3601 . . . . . . . 8 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ))
41 xp2nd 7199 . . . . . . . 8 (((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
43 xp1st 7198 . . . . . . . 8 (((𝐹‘(1st𝑗))‘(2nd𝑗)) ∈ (ℝ × ℝ) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4440, 43syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) ∈ ℝ)
4542, 44resubcld 10458 . . . . . 6 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℝ)
4645recnd 10068 . . . . 5 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℂ)
477, 8, 15, 17, 46fsumf1o 14454 . . . 4 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = Σ𝑚 ∈ (1...𝐾)((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
4819adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
4923ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ (ℕ × ℕ))
50 xp1st 7198 . . . . . . . . . . . 12 ((𝐽𝑘) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
5248, 51ffvelrnd 6360 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
5333, 34elmap 7886 . . . . . . . . . 10 ((𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
5452, 53sylib 208 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
55 xp2nd 7199 . . . . . . . . . 10 ((𝐽𝑘) ∈ (ℕ × ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
5649, 55syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
5754, 56ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) ∈ ( ≤ ∩ (ℝ × ℝ)))
58 ovoliun.h . . . . . . . 8 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
5957, 58fmptd 6385 . . . . . . 7 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
60 eqid 2622 . . . . . . . 8 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
6160ovolfsval 23239 . . . . . . 7 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))))
6259, 12, 61syl2an 494 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))))
6312adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...𝐾)) → 𝑚 ∈ ℕ)
64 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐽𝑘) = (𝐽𝑚))
6564fveq2d 6195 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (1st ‘(𝐽𝑘)) = (1st ‘(𝐽𝑚)))
6665fveq2d 6195 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐹‘(1st ‘(𝐽𝑘))) = (𝐹‘(1st ‘(𝐽𝑚))))
6764fveq2d 6195 . . . . . . . . . . 11 (𝑘 = 𝑚 → (2nd ‘(𝐽𝑘)) = (2nd ‘(𝐽𝑚)))
6866, 67fveq12d 6197 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
69 fvex 6201 . . . . . . . . . 10 ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))) ∈ V
7068, 58, 69fvmpt 6282 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝐻𝑚) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
7163, 70syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) = ((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))
7271fveq2d 6195 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → (2nd ‘(𝐻𝑚)) = (2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
7371fveq2d 6195 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → (1st ‘(𝐻𝑚)) = (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))))
7472, 73oveq12d 6668 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
7562, 74eqtrd 2656 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → (((abs ∘ − ) ∘ 𝐻)‘𝑚) = ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))))
76 ovoliun.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
77 nnuz 11723 . . . . . 6 ℕ = (ℤ‘1)
7876, 77syl6eleq 2711 . . . . 5 (𝜑𝐾 ∈ (ℤ‘1))
79 ffvelrn 6357 . . . . . . . . . . 11 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ( ≤ ∩ (ℝ × ℝ)))
8059, 12, 79syl2an 494 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) ∈ ( ≤ ∩ (ℝ × ℝ)))
8118, 80sseldi 3601 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...𝐾)) → (𝐻𝑚) ∈ (ℝ × ℝ))
82 xp2nd 7199 . . . . . . . . 9 ((𝐻𝑚) ∈ (ℝ × ℝ) → (2nd ‘(𝐻𝑚)) ∈ ℝ)
8381, 82syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (2nd ‘(𝐻𝑚)) ∈ ℝ)
84 xp1st 7198 . . . . . . . . 9 ((𝐻𝑚) ∈ (ℝ × ℝ) → (1st ‘(𝐻𝑚)) ∈ ℝ)
8581, 84syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ (1...𝐾)) → (1st ‘(𝐻𝑚)) ∈ ℝ)
8683, 85resubcld 10458 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) ∈ ℝ)
8786recnd 10068 . . . . . 6 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘(𝐻𝑚)) − (1st ‘(𝐻𝑚))) ∈ ℂ)
8874, 87eqeltrrd 2702 . . . . 5 ((𝜑𝑚 ∈ (1...𝐾)) → ((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))) ∈ ℂ)
8975, 78, 88fsumser 14461 . . . 4 (𝜑 → Σ𝑚 ∈ (1...𝐾)((2nd ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚)))) − (1st ‘((𝐹‘(1st ‘(𝐽𝑚)))‘(2nd ‘(𝐽𝑚))))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾))
9047, 89eqtrd 2656 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾))
91 ovoliun.u . . . 4 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
9291fveq1i 6192 . . 3 (𝑈𝐾) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝐾)
9390, 92syl6eqr 2674 . 2 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = (𝑈𝐾))
94 f1oeng 7974 . . . . . . 7 (((1...𝐾) ∈ Fin ∧ (𝐽 ↾ (1...𝐾)):(1...𝐾)–1-1-onto→(𝐽 “ (1...𝐾))) → (1...𝐾) ≈ (𝐽 “ (1...𝐾)))
958, 15, 94syl2anc 693 . . . . . 6 (𝜑 → (1...𝐾) ≈ (𝐽 “ (1...𝐾)))
9695ensymd 8007 . . . . 5 (𝜑 → (𝐽 “ (1...𝐾)) ≈ (1...𝐾))
97 enfii 8177 . . . . 5 (((1...𝐾) ∈ Fin ∧ (𝐽 “ (1...𝐾)) ≈ (1...𝐾)) → (𝐽 “ (1...𝐾)) ∈ Fin)
988, 96, 97syl2anc 693 . . . 4 (𝜑 → (𝐽 “ (1...𝐾)) ∈ Fin)
9998, 45fsumrecl 14465 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ∈ ℝ)
100 fzfid 12772 . . . . 5 (𝜑 → (1...𝐿) ∈ Fin)
101 elfznn 12370 . . . . . 6 (𝑛 ∈ (1...𝐿) → 𝑛 ∈ ℕ)
102 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
103101, 102sylan2 491 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℝ)
104100, 103fsumrecl 14465 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ℝ)
105 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
106105rpred 11872 . . . . . 6 (𝜑𝐵 ∈ ℝ)
107 2nn 11185 . . . . . . . 8 2 ∈ ℕ
108 nnnn0 11299 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
109 nnexpcl 12873 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
110107, 108, 109sylancr 695 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
111101, 110syl 17 . . . . . 6 (𝑛 ∈ (1...𝐿) → (2↑𝑛) ∈ ℕ)
112 nndivre 11056 . . . . . 6 ((𝐵 ∈ ℝ ∧ (2↑𝑛) ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ)
113106, 111, 112syl2an 494 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐵 / (2↑𝑛)) ∈ ℝ)
114100, 113fsumrecl 14465 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) ∈ ℝ)
115104, 114readdcld 10069 . . 3 (𝜑 → (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))) ∈ ℝ)
116 ovoliun.r . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
117116, 106readdcld 10069 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ)
118 relxp 5227 . . . . . . . . . . . . . . 15 Rel ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))
119 relres 5426 . . . . . . . . . . . . . . 15 Rel ((𝐽 “ (1...𝐾)) ↾ {𝑛})
120 opelxp 5146 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ (𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
121 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
122121opelres 5401 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ∧ 𝑥 ∈ {𝑛}))
123 ancom 466 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ {𝑛} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ∧ 𝑥 ∈ {𝑛}))
124 elsni 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑛} → 𝑥 = 𝑛)
125124opeq1d 4408 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑛} → ⟨𝑥, 𝑦⟩ = ⟨𝑛, 𝑦⟩)
126125eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑛} → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ↔ ⟨𝑛, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))))
127 vex 3203 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
128127, 121elimasn 5490 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}) ↔ ⟨𝑛, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)))
129126, 128syl6bbr 278 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑛} → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) ↔ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
130129pm5.32i 669 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ {𝑛} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾))) ↔ (𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})))
131122, 123, 1303bitr2ri 289 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {𝑛} ∧ 𝑦 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}))
132120, 131bitri 264 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽 “ (1...𝐾)) ↾ {𝑛}))
133118, 119, 132eqrelriiv 5214 . . . . . . . . . . . . . 14 ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ↾ {𝑛})
134 df-res 5126 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) ↾ {𝑛}) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V))
135133, 134eqtri 2644 . . . . . . . . . . . . 13 ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V))
136135a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)))
137136iuneq2dv 4542 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = 𝑛 ∈ (1...𝐿)((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)))
138 iunin2 4584 . . . . . . . . . . 11 𝑛 ∈ (1...𝐿)((𝐽 “ (1...𝐾)) ∩ ({𝑛} × V)) = ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V))
139137, 138syl6eq 2672 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)))
140 relxp 5227 . . . . . . . . . . . . . 14 Rel (ℕ × ℕ)
141 relss 5206 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ) → (Rel (ℕ × ℕ) → Rel (𝐽 “ (1...𝐾))))
14226, 140, 141mpisyl 21 . . . . . . . . . . . . 13 (𝜑 → Rel (𝐽 “ (1...𝐾)))
143 ovoliun.l2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿)
144 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21 (𝐽:ℕ⟶(ℕ × ℕ) → 𝐽 Fn ℕ)
14523, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 Fn ℕ)
146 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐽𝑤) → (1st𝑗) = (1st ‘(𝐽𝑤)))
147146breq1d 4663 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝐽𝑤) → ((1st𝑗) ≤ 𝐿 ↔ (1st ‘(𝐽𝑤)) ≤ 𝐿))
148147ralima 6498 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 Fn ℕ ∧ (1...𝐾) ⊆ ℕ) → (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿 ↔ ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿))
149145, 13, 148sylancl 694 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿 ↔ ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿))
150143, 149mpbird 247 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ≤ 𝐿)
151150r19.21bi 2932 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ≤ 𝐿)
15229, 77syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ (ℤ‘1))
153 ovoliun.l1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℤ)
154153adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → 𝐿 ∈ ℤ)
155 elfz5 12334 . . . . . . . . . . . . . . . . . 18 (((1st𝑗) ∈ (ℤ‘1) ∧ 𝐿 ∈ ℤ) → ((1st𝑗) ∈ (1...𝐿) ↔ (1st𝑗) ≤ 𝐿))
156152, 154, 155syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → ((1st𝑗) ∈ (1...𝐿) ↔ (1st𝑗) ≤ 𝐿))
157151, 156mpbird 247 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝐽 “ (1...𝐾))) → (1st𝑗) ∈ (1...𝐿))
158157ralrimiva 2966 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ∈ (1...𝐿))
159 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
160159, 121op1std 7178 . . . . . . . . . . . . . . . . 17 (𝑗 = ⟨𝑥, 𝑦⟩ → (1st𝑗) = 𝑥)
161160eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑗 = ⟨𝑥, 𝑦⟩ → ((1st𝑗) ∈ (1...𝐿) ↔ 𝑥 ∈ (1...𝐿)))
162161rspccv 3306 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ (𝐽 “ (1...𝐾))(1st𝑗) ∈ (1...𝐿) → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → 𝑥 ∈ (1...𝐿)))
163158, 162syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → 𝑥 ∈ (1...𝐿)))
164 opelxp 5146 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V) ↔ (𝑥 𝑛 ∈ (1...𝐿){𝑛} ∧ 𝑦 ∈ V))
165121biantru 526 . . . . . . . . . . . . . . 15 (𝑥 𝑛 ∈ (1...𝐿){𝑛} ↔ (𝑥 𝑛 ∈ (1...𝐿){𝑛} ∧ 𝑦 ∈ V))
166 iunid 4575 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝐿){𝑛} = (1...𝐿)
167166eleq2i 2693 . . . . . . . . . . . . . . 15 (𝑥 𝑛 ∈ (1...𝐿){𝑛} ↔ 𝑥 ∈ (1...𝐿))
168164, 165, 1673bitr2i 288 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V) ↔ 𝑥 ∈ (1...𝐿))
169163, 168syl6ibr 242 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐽 “ (1...𝐾)) → ⟨𝑥, 𝑦⟩ ∈ ( 𝑛 ∈ (1...𝐿){𝑛} × V)))
170142, 169relssdv 5212 . . . . . . . . . . . 12 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ ( 𝑛 ∈ (1...𝐿){𝑛} × V))
171 xpiundir 5174 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝐿){𝑛} × V) = 𝑛 ∈ (1...𝐿)({𝑛} × V)
172170, 171syl6sseq 3651 . . . . . . . . . . 11 (𝜑 → (𝐽 “ (1...𝐾)) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × V))
173 df-ss 3588 . . . . . . . . . . 11 ((𝐽 “ (1...𝐾)) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × V) ↔ ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)) = (𝐽 “ (1...𝐾)))
174172, 173sylib 208 . . . . . . . . . 10 (𝜑 → ((𝐽 “ (1...𝐾)) ∩ 𝑛 ∈ (1...𝐿)({𝑛} × V)) = (𝐽 “ (1...𝐾)))
175139, 174eqtrd 2656 . . . . . . . . 9 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) = (𝐽 “ (1...𝐾)))
176175, 98eqeltrd 2701 . . . . . . . 8 (𝜑 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
177 ssiun2 4563 . . . . . . . 8 (𝑛 ∈ (1...𝐿) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})))
178 ssfi 8180 . . . . . . . 8 (( 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ⊆ 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
179176, 177, 178syl2an 494 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin)
180 2ndconst 7266 . . . . . . . . . 10 (𝑛 ∈ V → (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛}))
181127, 180ax-mp 5 . . . . . . . . 9 (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛})
182 f1oeng 7974 . . . . . . . . 9 ((({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ (2nd ↾ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))):({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))–1-1-onto→((𝐽 “ (1...𝐾)) “ {𝑛})) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ≈ ((𝐽 “ (1...𝐾)) “ {𝑛}))
183179, 181, 182sylancl 694 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ≈ ((𝐽 “ (1...𝐾)) “ {𝑛}))
184183ensymd 8007 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ≈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})))
185 enfii 8177 . . . . . . 7 ((({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛})) ∈ Fin ∧ ((𝐽 “ (1...𝐾)) “ {𝑛}) ≈ ({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ∈ Fin)
186179, 184, 185syl2anc 693 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ∈ Fin)
187 ffvelrn 6357 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
18819, 101, 187syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
18933, 34elmap 7886 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
190188, 189sylib 208 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
191190adantrr 753 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
192 imassrn 5477 . . . . . . . . . . . . . 14 ((𝐽 “ (1...𝐾)) “ {𝑛}) ⊆ ran (𝐽 “ (1...𝐾))
19326adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ))
194 rnss 5354 . . . . . . . . . . . . . . . 16 ((𝐽 “ (1...𝐾)) ⊆ (ℕ × ℕ) → ran (𝐽 “ (1...𝐾)) ⊆ ran (ℕ × ℕ))
195193, 194syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝐿)) → ran (𝐽 “ (1...𝐾)) ⊆ ran (ℕ × ℕ))
196 rnxpid 5567 . . . . . . . . . . . . . . 15 ran (ℕ × ℕ) = ℕ
197195, 196syl6sseq 3651 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝐿)) → ran (𝐽 “ (1...𝐾)) ⊆ ℕ)
198192, 197syl5ss 3614 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → ((𝐽 “ (1...𝐾)) “ {𝑛}) ⊆ ℕ)
199198sseld 3602 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}) → 𝑖 ∈ ℕ))
200199impr 649 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → 𝑖 ∈ ℕ)
201191, 200ffvelrnd 6360 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐹𝑛)‘𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
20218, 201sseldi 3601 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ))
203 xp2nd 7199 . . . . . . . . 9 (((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ) → (2nd ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
204202, 203syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (2nd ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
205 xp1st 7198 . . . . . . . . 9 (((𝐹𝑛)‘𝑖) ∈ (ℝ × ℝ) → (1st ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
206202, 205syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → (1st ‘((𝐹𝑛)‘𝑖)) ∈ ℝ)
207204, 206resubcld 10458 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
208207anassrs 680 . . . . . 6 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
209186, 208fsumrecl 14465 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
210106, 110, 112syl2an 494 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ)
211102, 210readdcld 10069 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ)
212101, 211sylan2 491 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ)
213 eqid 2622 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝐹𝑛)) = ((abs ∘ − ) ∘ (𝐹𝑛))
214 ovoliun.s . . . . . . . . . . . 12 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
215213, 214ovolsf 23241 . . . . . . . . . . 11 ((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
216190, 215syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆:ℕ⟶(0[,)+∞))
217 frn 6053 . . . . . . . . . 10 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
218216, 217syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ (0[,)+∞))
219 icossxr 12258 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
220218, 219syl6ss 3615 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ ℝ*)
221 supxrcl 12145 . . . . . . . 8 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
222220, 221syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
223 mnfxr 10096 . . . . . . . . 9 -∞ ∈ ℝ*
224223a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ ∈ ℝ*)
225103rexrd 10089 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℝ*)
226 mnflt 11957 . . . . . . . . 9 ((vol*‘𝐴) ∈ ℝ → -∞ < (vol*‘𝐴))
227103, 226syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ < (vol*‘𝐴))
228 ovoliun.x1 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
229101, 228sylan2 491 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
230214ovollb 23247 . . . . . . . . 9 (((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ (𝐹𝑛))) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
231190, 229, 230syl2anc 693 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
232224, 225, 222, 227, 231xrltletrd 11992 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → -∞ < sup(ran 𝑆, ℝ*, < ))
233 ovoliun.x2 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
234101, 233sylan2 491 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
235 xrre 12000 . . . . . . 7 (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
236222, 212, 232, 234, 235syl22anc 1327 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
237 1zzd 11408 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → 1 ∈ ℤ)
238213ovolfsval 23239 . . . . . . . . 9 (((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
239190, 238sylan 488 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
240213ovolfsf 23240 . . . . . . . . . . . . 13 ((𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐹𝑛)):ℕ⟶(0[,)+∞))
241190, 240syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ((abs ∘ − ) ∘ (𝐹𝑛)):ℕ⟶(0[,)+∞))
242241ffvelrnda 6359 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐹𝑛))‘𝑖) ∈ (0[,)+∞))
243239, 242eqeltrrd 2702 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ (0[,)+∞))
244 elrege0 12278 . . . . . . . . . 10 (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ (0[,)+∞) ↔ (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ ∧ 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖)))))
245243, 244sylib 208 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → (((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ ∧ 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖)))))
246245simpld 475 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℝ)
247245simprd 479 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑖 ∈ ℕ) → 0 ≤ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
248 supxrub 12154 . . . . . . . . . . . . . . 15 ((ran 𝑆 ⊆ ℝ*𝑧 ∈ ran 𝑆) → 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
249220, 248sylan 488 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝐿)) ∧ 𝑧 ∈ ran 𝑆) → 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
250249ralrimiva 2966 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < ))
251 breq2 4657 . . . . . . . . . . . . . . 15 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (𝑧𝑥𝑧 ≤ sup(ran 𝑆, ℝ*, < )))
252251ralbidv 2986 . . . . . . . . . . . . . 14 (𝑥 = sup(ran 𝑆, ℝ*, < ) → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < )))
253252rspcev 3309 . . . . . . . . . . . . 13 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
254236, 250, 253syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
255 ffn 6045 . . . . . . . . . . . . . . 15 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
256216, 255syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆 Fn ℕ)
257 breq1 4656 . . . . . . . . . . . . . . 15 (𝑧 = (𝑆𝑘) → (𝑧𝑥 ↔ (𝑆𝑘) ≤ 𝑥))
258257ralrn 6362 . . . . . . . . . . . . . 14 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
259256, 258syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝐿)) → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
260259rexbidv 3052 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
261254, 260mpbid 222 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝐿)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
26277, 214, 237, 239, 246, 247, 261isumsup2 14578 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → 𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
263214, 262syl5eqbrr 4689 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ⇝ sup(ran 𝑆, ℝ, < ))
264 climrel 14223 . . . . . . . . . 10 Rel ⇝
265264releldmi 5362 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ⇝ sup(ran 𝑆, ℝ, < ) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ∈ dom ⇝ )
266263, 265syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛))) ∈ dom ⇝ )
26777, 237, 186, 198, 239, 246, 247, 266isumless 14577 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
26877, 214, 237, 239, 246, 247, 261isumsup 14579 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = sup(ran 𝑆, ℝ, < ))
269 rge0ssre 12280 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
270218, 269syl6ss 3615 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ⊆ ℝ)
271 1nn 11031 . . . . . . . . . . . 12 1 ∈ ℕ
272 fdm 6051 . . . . . . . . . . . . 13 (𝑆:ℕ⟶(0[,)+∞) → dom 𝑆 = ℕ)
273216, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝐿)) → dom 𝑆 = ℕ)
274271, 273syl5eleqr 2708 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝐿)) → 1 ∈ dom 𝑆)
275 ne0i 3921 . . . . . . . . . . 11 (1 ∈ dom 𝑆 → dom 𝑆 ≠ ∅)
276274, 275syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝐿)) → dom 𝑆 ≠ ∅)
277 dm0rn0 5342 . . . . . . . . . . 11 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
278277necon3bii 2846 . . . . . . . . . 10 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
279276, 278sylib 208 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝐿)) → ran 𝑆 ≠ ∅)
280 supxrre 12157 . . . . . . . . 9 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
281270, 279, 254, 280syl3anc 1326 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝐿)) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
282268, 281eqtr4d 2659 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ℕ ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = sup(ran 𝑆, ℝ*, < ))
283267, 282breqtrd 4679 . . . . . 6 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ sup(ran 𝑆, ℝ*, < ))
284209, 236, 212, 283, 234letrd 10194 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → Σ𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
285100, 209, 212, 284fsumle 14531 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ≤ Σ𝑛 ∈ (1...𝐿)((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
286 vex 3203 . . . . . . . . . . 11 𝑖 ∈ V
287127, 286op1std 7178 . . . . . . . . . 10 (𝑗 = ⟨𝑛, 𝑖⟩ → (1st𝑗) = 𝑛)
288287fveq2d 6195 . . . . . . . . 9 (𝑗 = ⟨𝑛, 𝑖⟩ → (𝐹‘(1st𝑗)) = (𝐹𝑛))
289127, 286op2ndd 7179 . . . . . . . . 9 (𝑗 = ⟨𝑛, 𝑖⟩ → (2nd𝑗) = 𝑖)
290288, 289fveq12d 6197 . . . . . . . 8 (𝑗 = ⟨𝑛, 𝑖⟩ → ((𝐹‘(1st𝑗))‘(2nd𝑗)) = ((𝐹𝑛)‘𝑖))
291290fveq2d 6195 . . . . . . 7 (𝑗 = ⟨𝑛, 𝑖⟩ → (2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (2nd ‘((𝐹𝑛)‘𝑖)))
292290fveq2d 6195 . . . . . . 7 (𝑗 = ⟨𝑛, 𝑖⟩ → (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) = (1st ‘((𝐹𝑛)‘𝑖)))
293291, 292oveq12d 6668 . . . . . 6 (𝑗 = ⟨𝑛, 𝑖⟩ → ((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))))
294207recnd 10068 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝐿) ∧ 𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛}))) → ((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) ∈ ℂ)
295293, 100, 186, 294fsum2d 14502 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = Σ𝑗 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
296175sumeq1d 14431 . . . . 5 (𝜑 → Σ𝑗 𝑛 ∈ (1...𝐿)({𝑛} × ((𝐽 “ (1...𝐾)) “ {𝑛}))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) = Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
297295, 296eqtrd 2656 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿𝑖 ∈ ((𝐽 “ (1...𝐾)) “ {𝑛})((2nd ‘((𝐹𝑛)‘𝑖)) − (1st ‘((𝐹𝑛)‘𝑖))) = Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))))
298103recnd 10068 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (vol*‘𝐴) ∈ ℂ)
299113recnd 10068 . . . . 5 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐵 / (2↑𝑛)) ∈ ℂ)
300100, 298, 299fsumadd 14470 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))))
301285, 297, 3003brtr3d 4684 . . 3 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ≤ (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))))
302 1zzd 11408 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
303 simpr 477 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
304 ovoliun.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
305304fvmpt2 6291 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐺𝑛) = (vol*‘𝐴))
306303, 102, 305syl2anc 693 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (vol*‘𝐴))
307306, 102eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
30877, 302, 307serfre 12830 . . . . . . . 8 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
309 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
310309feq1i 6036 . . . . . . . 8 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
311308, 310sylibr 224 . . . . . . 7 (𝜑𝑇:ℕ⟶ℝ)
312 frn 6053 . . . . . . 7 (𝑇:ℕ⟶ℝ → ran 𝑇 ⊆ ℝ)
313311, 312syl 17 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
314 ressxr 10083 . . . . . 6 ℝ ⊆ ℝ*
315313, 314syl6ss 3615 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ*)
316101, 306sylan2 491 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝐿)) → (𝐺𝑛) = (vol*‘𝐴))
317 1red 10055 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
318 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 1 ∈ ℕ) → (𝐽‘1) ∈ (ℕ × ℕ))
31923, 271, 318sylancl 694 . . . . . . . . . . . 12 (𝜑 → (𝐽‘1) ∈ (ℕ × ℕ))
320 xp1st 7198 . . . . . . . . . . . 12 ((𝐽‘1) ∈ (ℕ × ℕ) → (1st ‘(𝐽‘1)) ∈ ℕ)
321319, 320syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(𝐽‘1)) ∈ ℕ)
322321nnred 11035 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐽‘1)) ∈ ℝ)
323153zred 11482 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ)
324321nnge1d 11063 . . . . . . . . . 10 (𝜑 → 1 ≤ (1st ‘(𝐽‘1)))
325 eluzfz1 12348 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘1) → 1 ∈ (1...𝐾))
32678, 325syl 17 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝐾))
327 fveq2 6191 . . . . . . . . . . . . . 14 (𝑤 = 1 → (𝐽𝑤) = (𝐽‘1))
328327fveq2d 6195 . . . . . . . . . . . . 13 (𝑤 = 1 → (1st ‘(𝐽𝑤)) = (1st ‘(𝐽‘1)))
329328breq1d 4663 . . . . . . . . . . . 12 (𝑤 = 1 → ((1st ‘(𝐽𝑤)) ≤ 𝐿 ↔ (1st ‘(𝐽‘1)) ≤ 𝐿))
330329rspcv 3305 . . . . . . . . . . 11 (1 ∈ (1...𝐾) → (∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽𝑤)) ≤ 𝐿 → (1st ‘(𝐽‘1)) ≤ 𝐿))
331326, 143, 330sylc 65 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐽‘1)) ≤ 𝐿)
332317, 322, 323, 324, 331letrd 10194 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐿)
333 elnnz1 11403 . . . . . . . . 9 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 1 ≤ 𝐿))
334153, 332, 333sylanbrc 698 . . . . . . . 8 (𝜑𝐿 ∈ ℕ)
335334, 77syl6eleq 2711 . . . . . . 7 (𝜑𝐿 ∈ (ℤ‘1))
336316, 335, 298fsumser 14461 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) = (seq1( + , 𝐺)‘𝐿))
337 seqfn 12813 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , 𝐺) Fn (ℤ‘1))
338302, 337syl 17 . . . . . . . 8 (𝜑 → seq1( + , 𝐺) Fn (ℤ‘1))
339 fnfvelrn 6356 . . . . . . . 8 ((seq1( + , 𝐺) Fn (ℤ‘1) ∧ 𝐿 ∈ (ℤ‘1)) → (seq1( + , 𝐺)‘𝐿) ∈ ran seq1( + , 𝐺))
340338, 335, 339syl2anc 693 . . . . . . 7 (𝜑 → (seq1( + , 𝐺)‘𝐿) ∈ ran seq1( + , 𝐺))
341309rneqi 5352 . . . . . . 7 ran 𝑇 = ran seq1( + , 𝐺)
342340, 341syl6eleqr 2712 . . . . . 6 (𝜑 → (seq1( + , 𝐺)‘𝐿) ∈ ran 𝑇)
343336, 342eqeltrd 2701 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ran 𝑇)
344 supxrub 12154 . . . . 5 ((ran 𝑇 ⊆ ℝ* ∧ Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ∈ ran 𝑇) → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
345315, 343, 344syl2anc 693 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
346106recnd 10068 . . . . . 6 (𝜑𝐵 ∈ ℂ)
347 geo2sum 14604 . . . . . 6 ((𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) = (𝐵 − (𝐵 / (2↑𝐿))))
348334, 346, 347syl2anc 693 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) = (𝐵 − (𝐵 / (2↑𝐿))))
349334nnnn0d 11351 . . . . . . . . . 10 (𝜑𝐿 ∈ ℕ0)
350 nnexpcl 12873 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝐿 ∈ ℕ0) → (2↑𝐿) ∈ ℕ)
351107, 349, 350sylancr 695 . . . . . . . . 9 (𝜑 → (2↑𝐿) ∈ ℕ)
352351nnrpd 11870 . . . . . . . 8 (𝜑 → (2↑𝐿) ∈ ℝ+)
353105, 352rpdivcld 11889 . . . . . . 7 (𝜑 → (𝐵 / (2↑𝐿)) ∈ ℝ+)
354353rpge0d 11876 . . . . . 6 (𝜑 → 0 ≤ (𝐵 / (2↑𝐿)))
355106, 351nndivred 11069 . . . . . . 7 (𝜑 → (𝐵 / (2↑𝐿)) ∈ ℝ)
356106, 355subge02d 10619 . . . . . 6 (𝜑 → (0 ≤ (𝐵 / (2↑𝐿)) ↔ (𝐵 − (𝐵 / (2↑𝐿))) ≤ 𝐵))
357354, 356mpbid 222 . . . . 5 (𝜑 → (𝐵 − (𝐵 / (2↑𝐿))) ≤ 𝐵)
358348, 357eqbrtrd 4675 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛)) ≤ 𝐵)
359104, 114, 116, 106, 345, 358le2addd 10646 . . 3 (𝜑 → (Σ𝑛 ∈ (1...𝐿)(vol*‘𝐴) + Σ𝑛 ∈ (1...𝐿)(𝐵 / (2↑𝑛))) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
36099, 115, 117, 301, 359letrd 10194 . 2 (𝜑 → Σ𝑗 ∈ (𝐽 “ (1...𝐾))((2nd ‘((𝐹‘(1st𝑗))‘(2nd𝑗))) − (1st ‘((𝐹‘(1st𝑗))‘(2nd𝑗)))) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
36193, 360eqbrtrrd 4677 1 (𝜑 → (𝑈𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Rel wrel 5119   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  cen 7952  Fincfn 7955  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  (,)cioo 12175  [,)cico 12177  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovoliunlem2  23271
  Copyright terms: Public domain W3C validator