| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3552. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 2 | 1 | equsexvw 1932 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
| 3 | nfs1v 2437 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfbi 1833 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | sbequ12 2111 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 7 | 6 | bicomd 213 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 8 | sbhypf.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | sylan9bb 736 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 10 | 5, 9 | exlimi 2086 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 11 | 2, 10 | sylbir 225 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 Ⅎwnf 1708 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 |
| This theorem is referenced by: mob2 3386 reu2eqd 3403 cbvmptf 4748 ralxpf 5268 tfisi 7058 ac6sf 9311 nn0ind-raph 11477 ac6sf2 29429 nn0min 29567 ac6gf 33527 fdc1 33542 |
| Copyright terms: Public domain | W3C validator |