MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptf Structured version   Visualization version   GIF version

Theorem cbvmptf 4748
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypotheses
Ref Expression
cbvmptf.1 𝑥𝐴
cbvmptf.2 𝑦𝐴
cbvmptf.3 𝑦𝐵
cbvmptf.4 𝑥𝐶
cbvmptf.5 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptf (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmptf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 cbvmptf.1 . . . . . 6 𝑥𝐴
32nfcri 2758 . . . . 5 𝑥 𝑤𝐴
4 nfs1v 2437 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
53, 4nfan 1828 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
6 eleq1 2689 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
7 sbequ12 2111 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
86, 7anbi12d 747 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
91, 5, 8cbvopab1 4723 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
10 cbvmptf.2 . . . . . 6 𝑦𝐴
1110nfcri 2758 . . . . 5 𝑦 𝑤𝐴
12 cbvmptf.3 . . . . . . 7 𝑦𝐵
1312nfeq2 2780 . . . . . 6 𝑦 𝑧 = 𝐵
1413nfsb 2440 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
1511, 14nfan 1828 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
16 nfv 1843 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
17 eleq1 2689 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
18 cbvmptf.4 . . . . . . 7 𝑥𝐶
1918nfeq2 2780 . . . . . 6 𝑥 𝑧 = 𝐶
20 cbvmptf.5 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝐶)
2120eqeq2d 2632 . . . . . 6 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2219, 21sbhypf 3253 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2317, 22anbi12d 747 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2415, 16, 23cbvopab1 4723 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
259, 24eqtri 2644 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
26 df-mpt 4730 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
27 df-mpt 4730 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
2825, 26, 273eqtr4i 2654 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  [wsb 1880  wcel 1990  wnfc 2751  {copab 4712  cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  resmptf  5451  fvmpt2f  6283  offval2f  6909  numclwlk1lem2  27230  suppss2f  29439  fmptdF  29456  acunirnmpt2f  29461  funcnv4mpt  29470  cbvesum  30104  esumpfinvalf  30138  binomcxplemdvbinom  38552  binomcxplemdvsum  38554  binomcxplemnotnn0  38555  supxrleubrnmptf  39680  fnlimfv  39895  fnlimfvre2  39909  fnlimf  39910  limsupequzmptf  39963  sge0iunmptlemre  40632  smflim  40985  smflim2  41012  smfsup  41020  smfinf  41024  smflimsuplem2  41027  smflimsuplem5  41030  smflimsup  41034  smfliminf  41037
  Copyright terms: Public domain W3C validator