| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. 2
⊢ 𝑇 ⊆ 𝑇 |
| 2 | | eqid 2622 |
. . . . 5
⊢ 𝑇 = 𝑇 |
| 3 | | tfisi.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | | tfisi.b |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ On) |
| 5 | | eqeq2 2633 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝑅 = 𝑧 ↔ 𝑅 = 𝑤)) |
| 6 | | sseq1 3626 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝑇 ↔ 𝑤 ⊆ 𝑇)) |
| 7 | 6 | anbi2d 740 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) ↔ (𝜑 ∧ 𝑤 ⊆ 𝑇))) |
| 8 | 7 | imbi1d 331 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓) ↔ ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓))) |
| 9 | 5, 8 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → ((𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)) ↔ (𝑅 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓)))) |
| 10 | 9 | albidv 1849 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (∀𝑥(𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)) ↔ ∀𝑥(𝑅 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓)))) |
| 11 | | tfisi.f |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) |
| 12 | 11 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑅 = 𝑤 ↔ 𝑆 = 𝑤)) |
| 13 | | tfisi.d |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| 14 | 13 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓) ↔ ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) |
| 15 | 12, 14 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑅 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓)) ↔ (𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒)))) |
| 16 | 15 | cbvalv 2273 |
. . . . . . . . 9
⊢
(∀𝑥(𝑅 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜓)) ↔ ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) |
| 17 | 10, 16 | syl6bb 276 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (∀𝑥(𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)) ↔ ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒)))) |
| 18 | | eqeq2 2633 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑇 → (𝑅 = 𝑧 ↔ 𝑅 = 𝑇)) |
| 19 | | sseq1 3626 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑇 → (𝑧 ⊆ 𝑇 ↔ 𝑇 ⊆ 𝑇)) |
| 20 | 19 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑇 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) ↔ (𝜑 ∧ 𝑇 ⊆ 𝑇))) |
| 21 | 20 | imbi1d 331 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑇 → (((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓) ↔ ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓))) |
| 22 | 18, 21 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑧 = 𝑇 → ((𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)) ↔ (𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓)))) |
| 23 | 22 | albidv 1849 |
. . . . . . . 8
⊢ (𝑧 = 𝑇 → (∀𝑥(𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)) ↔ ∀𝑥(𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓)))) |
| 24 | | simp3l 1089 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝜑) |
| 25 | | simp2 1062 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝑅 = 𝑧) |
| 26 | | simp1l 1085 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝑧 ∈ On) |
| 27 | 25, 26 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝑅 ∈ On) |
| 28 | | simp3r 1090 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝑧 ⊆ 𝑇) |
| 29 | 25, 28 | eqsstrd 3639 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝑅 ⊆ 𝑇) |
| 30 | | simpl3l 1116 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → 𝜑) |
| 31 | | simpl1l 1112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → 𝑧 ∈ On) |
| 32 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) |
| 33 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → 𝑅 = 𝑧) |
| 34 | 32, 33 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑧) |
| 35 | | onelss 5766 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ On →
(⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑧 → ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑧)) |
| 36 | 31, 34, 35 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑧) |
| 37 | | simpl3r 1117 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → 𝑧 ⊆ 𝑇) |
| 38 | 36, 37 | sstrd 3613 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) |
| 39 | | simpl1r 1113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) |
| 40 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → (𝑆 = 𝑤 ↔ 𝑆 = ⦋𝑣 / 𝑥⦌𝑅)) |
| 41 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → (𝑤 ⊆ 𝑇 ↔ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇)) |
| 42 | 41 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) ↔ (𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇))) |
| 43 | 42 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → (((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒) ↔ ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒))) |
| 44 | 40, 43 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒)) ↔ (𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒)))) |
| 45 | 44 | albidv 1849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ⦋𝑣 / 𝑥⦌𝑅 → (∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒)) ↔ ∀𝑦(𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒)))) |
| 46 | 45 | rspcva 3307 |
. . . . . . . . . . . . . . . . . 18
⊢
((⦋𝑣 /
𝑥⦌𝑅 ∈ 𝑧 ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) → ∀𝑦(𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒))) |
| 47 | 34, 39, 46 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ∀𝑦(𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒))) |
| 48 | | eqidd 2623 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ⦋𝑣 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑥⦌𝑅) |
| 49 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑥𝑦 |
| 50 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑥𝑆 |
| 51 | 49, 50, 11 | csbhypf 3552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑦 → ⦋𝑣 / 𝑥⦌𝑅 = 𝑆) |
| 52 | 51 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑦 → 𝑆 = ⦋𝑣 / 𝑥⦌𝑅) |
| 53 | 52 | equcoms 1947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑣 → 𝑆 = ⦋𝑣 / 𝑥⦌𝑅) |
| 54 | 53 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑣 → (𝑆 = ⦋𝑣 / 𝑥⦌𝑅 ↔ ⦋𝑣 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑥⦌𝑅)) |
| 55 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑥𝜒 |
| 56 | 55, 13 | sbhypf 3253 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑦 → ([𝑣 / 𝑥]𝜓 ↔ 𝜒)) |
| 57 | 56 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑦 → (𝜒 ↔ [𝑣 / 𝑥]𝜓)) |
| 58 | 57 | equcoms 1947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑣 → (𝜒 ↔ [𝑣 / 𝑥]𝜓)) |
| 59 | 58 | imbi2d 330 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑣 → (((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒) ↔ ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → [𝑣 / 𝑥]𝜓))) |
| 60 | 54, 59 | imbi12d 334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → ((𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒)) ↔ (⦋𝑣 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → [𝑣 / 𝑥]𝜓)))) |
| 61 | 60 | spv 2260 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦(𝑆 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → 𝜒)) → (⦋𝑣 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑥⦌𝑅 → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → [𝑣 / 𝑥]𝜓))) |
| 62 | 47, 48, 61 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → ((𝜑 ∧ ⦋𝑣 / 𝑥⦌𝑅 ⊆ 𝑇) → [𝑣 / 𝑥]𝜓)) |
| 63 | 30, 38, 62 | mp2and 715 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) ∧ ⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅) → [𝑣 / 𝑥]𝜓) |
| 64 | 63 | ex 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → (⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅 → [𝑣 / 𝑥]𝜓)) |
| 65 | 64 | alrimiv 1855 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → ∀𝑣(⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅 → [𝑣 / 𝑥]𝜓)) |
| 66 | 51 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → (⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅 ↔ 𝑆 ∈ 𝑅)) |
| 67 | 66, 56 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → ((⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅 → [𝑣 / 𝑥]𝜓) ↔ (𝑆 ∈ 𝑅 → 𝜒))) |
| 68 | 67 | cbvalv 2273 |
. . . . . . . . . . . . 13
⊢
(∀𝑣(⦋𝑣 / 𝑥⦌𝑅 ∈ 𝑅 → [𝑣 / 𝑥]𝜓) ↔ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) |
| 69 | 65, 68 | sylib 208 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) |
| 70 | | tfisi.c |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) |
| 71 | 24, 27, 29, 69, 70 | syl121anc 1331 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) ∧ 𝑅 = 𝑧 ∧ (𝜑 ∧ 𝑧 ⊆ 𝑇)) → 𝜓) |
| 72 | 71 | 3exp 1264 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) → (𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓))) |
| 73 | 72 | alrimiv 1855 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒))) → ∀𝑥(𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓))) |
| 74 | 73 | ex 450 |
. . . . . . . 8
⊢ (𝑧 ∈ On → (∀𝑤 ∈ 𝑧 ∀𝑦(𝑆 = 𝑤 → ((𝜑 ∧ 𝑤 ⊆ 𝑇) → 𝜒)) → ∀𝑥(𝑅 = 𝑧 → ((𝜑 ∧ 𝑧 ⊆ 𝑇) → 𝜓)))) |
| 75 | 17, 23, 74 | tfis3 7057 |
. . . . . . 7
⊢ (𝑇 ∈ On → ∀𝑥(𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓))) |
| 76 | 4, 75 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∀𝑥(𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓))) |
| 77 | | tfisi.g |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) |
| 78 | 77 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑅 = 𝑇 ↔ 𝑇 = 𝑇)) |
| 79 | | tfisi.e |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| 80 | 79 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓) ↔ ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜃))) |
| 81 | 78, 80 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓)) ↔ (𝑇 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜃)))) |
| 82 | 81 | spcgv 3293 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑅 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜓)) → (𝑇 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜃)))) |
| 83 | 3, 76, 82 | sylc 65 |
. . . . 5
⊢ (𝜑 → (𝑇 = 𝑇 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜃))) |
| 84 | 2, 83 | mpi 20 |
. . . 4
⊢ (𝜑 → ((𝜑 ∧ 𝑇 ⊆ 𝑇) → 𝜃)) |
| 85 | 84 | expd 452 |
. . 3
⊢ (𝜑 → (𝜑 → (𝑇 ⊆ 𝑇 → 𝜃))) |
| 86 | 85 | pm2.43i 52 |
. 2
⊢ (𝜑 → (𝑇 ⊆ 𝑇 → 𝜃)) |
| 87 | 1, 86 | mpi 20 |
1
⊢ (𝜑 → 𝜃) |