Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0min Structured version   Visualization version   GIF version

Theorem nn0min 29567
Description: Extracting the minimum positive integer for which a property 𝜒 does not hold. This uses substitutions similar to nn0ind 11472. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nn0min.0 (𝑛 = 0 → (𝜓𝜒))
nn0min.1 (𝑛 = 𝑚 → (𝜓𝜃))
nn0min.2 (𝑛 = (𝑚 + 1) → (𝜓𝜏))
nn0min.3 (𝜑 → ¬ 𝜒)
nn0min.4 (𝜑 → ∃𝑛 ∈ ℕ 𝜓)
Assertion
Ref Expression
nn0min (𝜑 → ∃𝑚 ∈ ℕ0𝜃𝜏))
Distinct variable groups:   𝑚,𝑛,𝜑   𝜓,𝑚   𝜏,𝑛   𝜃,𝑛   𝜒,𝑚,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝜃(𝑚)   𝜏(𝑚)

Proof of Theorem nn0min
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0min.4 . . . . 5 (𝜑 → ∃𝑛 ∈ ℕ 𝜓)
21adantr 481 . . . 4 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∃𝑛 ∈ ℕ 𝜓)
3 nfv 1843 . . . . . . . . . 10 𝑚𝜑
4 nfra1 2941 . . . . . . . . . 10 𝑚𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)
53, 4nfan 1828 . . . . . . . . 9 𝑚(𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏))
6 nfv 1843 . . . . . . . . 9 𝑚 ¬ [𝑘 / 𝑛]𝜓
75, 6nfim 1825 . . . . . . . 8 𝑚((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓)
8 dfsbcq2 3438 . . . . . . . . . 10 (𝑘 = 1 → ([𝑘 / 𝑛]𝜓[1 / 𝑛]𝜓))
98notbid 308 . . . . . . . . 9 (𝑘 = 1 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ [1 / 𝑛]𝜓))
109imbi2d 330 . . . . . . . 8 (𝑘 = 1 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓)))
11 nfv 1843 . . . . . . . . . . 11 𝑛𝜃
12 nn0min.1 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝜓𝜃))
1311, 12sbhypf 3253 . . . . . . . . . 10 (𝑘 = 𝑚 → ([𝑘 / 𝑛]𝜓𝜃))
1413notbid 308 . . . . . . . . 9 (𝑘 = 𝑚 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜃))
1514imbi2d 330 . . . . . . . 8 (𝑘 = 𝑚 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜃)))
16 nfv 1843 . . . . . . . . . . 11 𝑛𝜏
17 nn0min.2 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (𝜓𝜏))
1816, 17sbhypf 3253 . . . . . . . . . 10 (𝑘 = (𝑚 + 1) → ([𝑘 / 𝑛]𝜓𝜏))
1918notbid 308 . . . . . . . . 9 (𝑘 = (𝑚 + 1) → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜏))
2019imbi2d 330 . . . . . . . 8 (𝑘 = (𝑚 + 1) → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜏)))
21 sbequ12r 2112 . . . . . . . . . 10 (𝑘 = 𝑛 → ([𝑘 / 𝑛]𝜓𝜓))
2221notbid 308 . . . . . . . . 9 (𝑘 = 𝑛 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜓))
2322imbi2d 330 . . . . . . . 8 (𝑘 = 𝑛 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓)))
24 nn0min.3 . . . . . . . . 9 (𝜑 → ¬ 𝜒)
25 0nn0 11307 . . . . . . . . . 10 0 ∈ ℕ0
2611, 12sbie 2408 . . . . . . . . . . . . . 14 ([𝑚 / 𝑛]𝜓𝜃)
27 nfv 1843 . . . . . . . . . . . . . . 15 𝑛𝜒
28 nn0min.0 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝜓𝜒))
2927, 28sbhypf 3253 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([𝑚 / 𝑛]𝜓𝜒))
3026, 29syl5bbr 274 . . . . . . . . . . . . 13 (𝑚 = 0 → (𝜃𝜒))
3130notbid 308 . . . . . . . . . . . 12 (𝑚 = 0 → (¬ 𝜃 ↔ ¬ 𝜒))
32 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
33 0p1e1 11132 . . . . . . . . . . . . . . . 16 (0 + 1) = 1
3432, 33syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑚 = 0 → (𝑚 + 1) = 1)
35 1nn 11031 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
36 eleq1 2689 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) = 1 → ((𝑚 + 1) ∈ ℕ ↔ 1 ∈ ℕ))
3735, 36mpbiri 248 . . . . . . . . . . . . . . 15 ((𝑚 + 1) = 1 → (𝑚 + 1) ∈ ℕ)
3817sbcieg 3468 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ ℕ → ([(𝑚 + 1) / 𝑛]𝜓𝜏))
3934, 37, 383syl 18 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓𝜏))
4034sbceq1d 3440 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓[1 / 𝑛]𝜓))
4139, 40bitr3d 270 . . . . . . . . . . . . 13 (𝑚 = 0 → (𝜏[1 / 𝑛]𝜓))
4241notbid 308 . . . . . . . . . . . 12 (𝑚 = 0 → (¬ 𝜏 ↔ ¬ [1 / 𝑛]𝜓))
4331, 42imbi12d 334 . . . . . . . . . . 11 (𝑚 = 0 → ((¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜒 → ¬ [1 / 𝑛]𝜓)))
4443rspcv 3305 . . . . . . . . . 10 (0 ∈ ℕ0 → (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜒 → ¬ [1 / 𝑛]𝜓)))
4525, 44ax-mp 5 . . . . . . . . 9 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜒 → ¬ [1 / 𝑛]𝜓))
4624, 45mpan9 486 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓)
47 cbvralsv 3182 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) ↔ ∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏))
48 nnnn0 11299 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
49 sbequ12r 2112 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ([𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜃 → ¬ 𝜏)))
5049rspcv 3305 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5148, 50syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5247, 51syl5bi 232 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5352adantld 483 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → (¬ 𝜃 → ¬ 𝜏)))
5453a2d 29 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜃) → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜏)))
557, 10, 15, 20, 23, 46, 54nnindf 29565 . . . . . . 7 (𝑛 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓))
5655rgen 2922 . . . . . 6 𝑛 ∈ ℕ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓)
57 r19.21v 2960 . . . . . 6 (∀𝑛 ∈ ℕ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓))
5856, 57mpbi 220 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓)
59 ralnex 2992 . . . . 5 (∀𝑛 ∈ ℕ ¬ 𝜓 ↔ ¬ ∃𝑛 ∈ ℕ 𝜓)
6058, 59sylib 208 . . . 4 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ ∃𝑛 ∈ ℕ 𝜓)
612, 60pm2.65da 600 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏))
62 imnan 438 . . . 4 ((¬ 𝜃 → ¬ 𝜏) ↔ ¬ (¬ 𝜃𝜏))
6362ralbii 2980 . . 3 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) ↔ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
6461, 63sylnib 318 . 2 (𝜑 → ¬ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
65 dfrex2 2996 . 2 (∃𝑚 ∈ ℕ0𝜃𝜏) ↔ ¬ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
6664, 65sylibr 224 1 (𝜑 → ∃𝑚 ∈ ℕ0𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  [wsb 1880  wcel 1990  wral 2912  wrex 2913  [wsbc 3435  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-n0 11293
This theorem is referenced by:  archirng  29742
  Copyright terms: Public domain W3C validator