![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmfval | Structured version Visualization version GIF version |
Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
sitmval.d | ⊢ 𝐷 = (dist‘𝑊) |
sitmval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitmval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sitmfval.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
sitmfval.2 | ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sitmfval | ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘𝑓 𝐷𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitmval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
2 | sitmval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
3 | sitmval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
4 | 1, 2, 3 | sitmval 30411 | . 2 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 𝐷𝑔)))) |
5 | simprl 794 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) | |
6 | simprr 796 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) | |
7 | 5, 6 | oveq12d 6668 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∘𝑓 𝐷𝑔) = (𝐹 ∘𝑓 𝐷𝐺)) |
8 | 7 | fveq2d 6195 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 𝐷𝑔)) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘𝑓 𝐷𝐺))) |
9 | sitmfval.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
10 | sitmfval.2 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | |
11 | fvexd 6203 | . 2 ⊢ (𝜑 → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘𝑓 𝐷𝐺)) ∈ V) | |
12 | 4, 8, 9, 10, 11 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘𝑓 𝐷𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cuni 4436 dom cdm 5114 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 0cc0 9936 +∞cpnf 10071 [,]cicc 12178 ↾s cress 15858 distcds 15950 ℝ*𝑠cxrs 16160 measurescmeas 30258 sitmcsitm 30390 sitgcsitg 30391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-1st 7168 df-2nd 7169 df-sitm 30393 |
This theorem is referenced by: sitmcl 30413 sitmf 30414 |
Copyright terms: Public domain | W3C validator |