Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmfval Structured version   Visualization version   Unicode version

Theorem sitmfval 30412
Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d  |-  D  =  ( dist `  W
)
sitmval.1  |-  ( ph  ->  W  e.  V )
sitmval.2  |-  ( ph  ->  M  e.  U. ran measures )
sitmfval.1  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
sitmfval.2  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
Assertion
Ref Expression
sitmfval  |-  ( ph  ->  ( F ( Wsitm M ) G )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( F  oF D G ) ) )

Proof of Theorem sitmfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.d . . 3  |-  D  =  ( dist `  W
)
2 sitmval.1 . . 3  |-  ( ph  ->  W  e.  V )
3 sitmval.2 . . 3  |-  ( ph  ->  M  e.  U. ran measures )
41, 2, 3sitmval 30411 . 2  |-  ( ph  ->  ( Wsitm M )  =  ( f  e. 
dom  ( Wsitg M
) ,  g  e. 
dom  ( Wsitg M
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) ) )
5 simprl 794 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
f  =  F )
6 simprr 796 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
g  =  G )
75, 6oveq12d 6668 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( f  oF D g )  =  ( F  oF D G ) )
87fveq2d 6195 . 2  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) `  ( f  oF D g ) )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( F  oF D G ) ) )
9 sitmfval.1 . 2  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
10 sitmfval.2 . 2  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
11 fvexd 6203 . 2  |-  ( ph  ->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) `  ( F  oF
D G ) )  e.  _V )
124, 8, 9, 10, 11ovmpt2d 6788 1  |-  ( ph  ->  ( F ( Wsitm M ) G )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( F  oF D G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    oFcof 6895   0cc0 9936   +oocpnf 10071   [,]cicc 12178   ↾s cress 15858   distcds 15950   RR*scxrs 16160  measurescmeas 30258  sitmcsitm 30390  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169  df-sitm 30393
This theorem is referenced by:  sitmcl  30413  sitmf  30414
  Copyright terms: Public domain W3C validator