MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolvec Structured version   Visualization version   GIF version

Theorem slesolvec 20485
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
slesolvec (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))

Proof of Theorem slesolvec
StepHypRef Expression
1 slesolex.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 20218 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 475 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
5 simpr 477 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
6 simpl 473 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅)
75, 5, 63jca 1242 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
87ex 450 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
98adantr 481 . . . . 5 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
104, 9syl5com 31 . . . 4 (𝑋𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1110adantr 481 . . 3 ((𝑋𝐵𝑌𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1211impcom 446 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
13 simpr 477 . . 3 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
14 simpr 477 . . 3 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
1513, 14anim12i 590 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑌𝑉))
16 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2622 . . 3 ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))
18 slesolex.v . . 3 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
19 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
2016, 17, 18, 19, 18mavmulsolcl 20357 . 2 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2112, 15, 20syl2anc 693 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  c0 3915  cop 4183   × cxp 5112  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  Ringcrg 18547   Mat cmat 20213   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-slot 15861  df-base 15863  df-mat 20214  df-mvmul 20347
This theorem is referenced by:  slesolinv  20486  cramerimplem3  20491  cramerimp  20492  cramer  20497
  Copyright terms: Public domain W3C validator