MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscres Structured version   Visualization version   GIF version

Theorem sscres 16483
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscres ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)

Proof of Theorem sscres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . 3 (𝑆𝑇) ⊆ 𝑆
2 inss2 3834 . . . . . . 7 (𝑆𝑇) ⊆ 𝑇
3 simpl 473 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥 ∈ (𝑆𝑇))
42, 3sseldi 3601 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑥𝑇)
5 simpr 477 . . . . . . 7 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦 ∈ (𝑆𝑇))
62, 5sseldi 3601 . . . . . 6 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦𝑇)
74, 6ovresd 6801 . . . . 5 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦))
8 eqimss 3657 . . . . 5 ((𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) = (𝑥𝐻𝑦) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
97, 8syl 17 . . . 4 ((𝑥 ∈ (𝑆𝑇) ∧ 𝑦 ∈ (𝑆𝑇)) → (𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
109rgen2a 2977 . . 3 𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦)
111, 10pm3.2i 471 . 2 ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))
12 simpl 473 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻 Fn (𝑆 × 𝑆))
13 inss1 3833 . . . . 5 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)
14 fnssres 6004 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ⊆ (𝑆 × 𝑆)) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
1512, 13, 14sylancl 694 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
16 resres 5409 . . . . . 6 ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)))
17 fnresdm 6000 . . . . . . . 8 (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1817adantr 481 . . . . . . 7 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
1918reseq1d 5395 . . . . . 6 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑆 × 𝑆)) ↾ (𝑇 × 𝑇)) = (𝐻 ↾ (𝑇 × 𝑇)))
2016, 19syl5eqr 2670 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) = (𝐻 ↾ (𝑇 × 𝑇)))
21 inxp 5254 . . . . . 6 ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇))
2221a1i 11 . . . . 5 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) = ((𝑆𝑇) × (𝑆𝑇)))
2320, 22fneq12d 5983 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇))) Fn ((𝑆 × 𝑆) ∩ (𝑇 × 𝑇)) ↔ (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇))))
2415, 23mpbid 222 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) Fn ((𝑆𝑇) × (𝑆𝑇)))
25 simpr 477 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝑆𝑉)
2624, 12, 25isssc 16480 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → ((𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻 ↔ ((𝑆𝑇) ⊆ 𝑆 ∧ ∀𝑥 ∈ (𝑆𝑇)∀𝑦 ∈ (𝑆𝑇)(𝑥(𝐻 ↾ (𝑇 × 𝑇))𝑦) ⊆ (𝑥𝐻𝑦))))
2711, 26mpbiri 248 1 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑇 × 𝑇)) ⊆cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  cres 5116   Fn wfn 5883  (class class class)co 6650  cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  sscid  16484  fullsubc  16510
  Copyright terms: Public domain W3C validator