| Step | Hyp | Ref
| Expression |
| 1 | | fullsubc.h |
. . . . 5
⊢ 𝐻 = (Homf
‘𝐶) |
| 2 | | fullsubc.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
| 3 | 1, 2 | homffn 16353 |
. . . 4
⊢ 𝐻 Fn (𝐵 × 𝐵) |
| 4 | | fvex 6201 |
. . . . 5
⊢
(Base‘𝐶)
∈ V |
| 5 | 2, 4 | eqeltri 2697 |
. . . 4
⊢ 𝐵 ∈ V |
| 6 | | sscres 16483 |
. . . 4
⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻) |
| 7 | 3, 5, 6 | mp2an 708 |
. . 3
⊢ (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 |
| 8 | 7 | a1i 11 |
. 2
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻) |
| 9 | | eqid 2622 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 10 | | eqid 2622 |
. . . . . 6
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 11 | | fullsubc.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐶 ∈ Cat) |
| 13 | | fullsubc.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 14 | 13 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 15 | 2, 9, 10, 12, 14 | catidcl 16343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 16 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 17 | 16, 16 | ovresd 6801 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥)) |
| 18 | 1, 2, 9, 14, 14 | homfval 16352 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
| 19 | 17, 18 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
| 20 | 15, 19 | eleqtrrd 2704 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥)) |
| 21 | | eqid 2622 |
. . . . . . . . . 10
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 22 | 12 | ad3antrrr 766 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
| 23 | 14 | ad3antrrr 766 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝐵) |
| 24 | 13 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 25 | 24 | sselda 3603 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 26 | 25 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 27 | 26 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
| 28 | 24 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 29 | 28 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) |
| 30 | 29 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
| 31 | | simprl 794 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 32 | | simprr 796 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 33 | 2, 9, 21, 22, 23, 27, 30, 31, 32 | catcocl 16346 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
| 34 | 16 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝑆) |
| 35 | | simplr 792 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝑆) |
| 36 | 34, 35 | ovresd 6801 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧)) |
| 37 | 1, 2, 9, 23, 30 | homfval 16352 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
| 38 | 36, 37 | eqtrd 2656 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
| 39 | 33, 38 | eleqtrrd 2704 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
| 40 | 39 | ralrimivva 2971 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
| 41 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 42 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
| 43 | 41, 42 | ovresd 6801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
| 44 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 45 | 1, 2, 9, 44, 25 | homfval 16352 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 46 | 43, 45 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 47 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 48 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
| 49 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) |
| 50 | 48, 49 | ovresd 6801 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧)) |
| 51 | 1, 2, 9, 26, 29 | homfval 16352 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
| 52 | 50, 51 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
| 53 | 52 | raleqdv 3144 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
| 54 | 47, 53 | raleqbidv 3152 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
| 55 | 40, 54 | mpbird 247 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
| 56 | 55 | ralrimiva 2966 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
| 57 | 56 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
| 58 | 20, 57 | jca 554 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
| 59 | 58 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
| 60 | | xpss12 5225 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
| 61 | 13, 13, 60 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
| 62 | | fnssres 6004 |
. . . 4
⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
| 63 | 3, 61, 62 | sylancr 695 |
. . 3
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
| 64 | 1, 10, 21, 11, 63 | issubc2 16496 |
. 2
⊢ (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))))) |
| 65 | 8, 59, 64 | mpbir2and 957 |
1
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶)) |