HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stj Structured version   Visualization version   Unicode version

Theorem stj 29094
Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
stj  |-  ( S  e.  States  ->  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  A  C_  ( _|_ `  B ) )  -> 
( S `  ( A  vH  B ) )  =  ( ( S `
 A )  +  ( S `  B
) ) ) )

Proof of Theorem stj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isst 29072 . . . 4  |-  ( S  e.  States 
<->  ( S : CH --> ( 0 [,] 1
)  /\  ( S `  ~H )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )
21simp3bi 1078 . . 3  |-  ( S  e.  States  ->  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) )
3 sseq1 3626 . . . . 5  |-  ( x  =  A  ->  (
x  C_  ( _|_ `  y )  <->  A  C_  ( _|_ `  y ) ) )
4 oveq1 6657 . . . . . . 7  |-  ( x  =  A  ->  (
x  vH  y )  =  ( A  vH  y ) )
54fveq2d 6195 . . . . . 6  |-  ( x  =  A  ->  ( S `  ( x  vH  y ) )  =  ( S `  ( A  vH  y ) ) )
6 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( S `  x )  =  ( S `  A ) )
76oveq1d 6665 . . . . . 6  |-  ( x  =  A  ->  (
( S `  x
)  +  ( S `
 y ) )  =  ( ( S `
 A )  +  ( S `  y
) ) )
85, 7eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( S `  (
x  vH  y )
)  =  ( ( S `  x )  +  ( S `  y ) )  <->  ( S `  ( A  vH  y
) )  =  ( ( S `  A
)  +  ( S `
 y ) ) ) )
93, 8imbi12d 334 . . . 4  |-  ( x  =  A  ->  (
( x  C_  ( _|_ `  y )  -> 
( S `  (
x  vH  y )
)  =  ( ( S `  x )  +  ( S `  y ) ) )  <-> 
( A  C_  ( _|_ `  y )  -> 
( S `  ( A  vH  y ) )  =  ( ( S `
 A )  +  ( S `  y
) ) ) ) )
10 fveq2 6191 . . . . . 6  |-  ( y  =  B  ->  ( _|_ `  y )  =  ( _|_ `  B
) )
1110sseq2d 3633 . . . . 5  |-  ( y  =  B  ->  ( A  C_  ( _|_ `  y
)  <->  A  C_  ( _|_ `  B ) ) )
12 oveq2 6658 . . . . . . 7  |-  ( y  =  B  ->  ( A  vH  y )  =  ( A  vH  B
) )
1312fveq2d 6195 . . . . . 6  |-  ( y  =  B  ->  ( S `  ( A  vH  y ) )  =  ( S `  ( A  vH  B ) ) )
14 fveq2 6191 . . . . . . 7  |-  ( y  =  B  ->  ( S `  y )  =  ( S `  B ) )
1514oveq2d 6666 . . . . . 6  |-  ( y  =  B  ->  (
( S `  A
)  +  ( S `
 y ) )  =  ( ( S `
 A )  +  ( S `  B
) ) )
1613, 15eqeq12d 2637 . . . . 5  |-  ( y  =  B  ->  (
( S `  ( A  vH  y ) )  =  ( ( S `
 A )  +  ( S `  y
) )  <->  ( S `  ( A  vH  B
) )  =  ( ( S `  A
)  +  ( S `
 B ) ) ) )
1711, 16imbi12d 334 . . . 4  |-  ( y  =  B  ->  (
( A  C_  ( _|_ `  y )  -> 
( S `  ( A  vH  y ) )  =  ( ( S `
 A )  +  ( S `  y
) ) )  <->  ( A  C_  ( _|_ `  B
)  ->  ( S `  ( A  vH  B
) )  =  ( ( S `  A
)  +  ( S `
 B ) ) ) ) )
189, 17rspc2v 3322 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) )  ->  ( A  C_  ( _|_ `  B
)  ->  ( S `  ( A  vH  B
) )  =  ( ( S `  A
)  +  ( S `
 B ) ) ) ) )
192, 18syl5com 31 . 2  |-  ( S  e.  States  ->  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_  ( _|_ `  B
)  ->  ( S `  ( A  vH  B
) )  =  ( ( S `  A
)  +  ( S `
 B ) ) ) ) )
2019impd 447 1  |-  ( S  e.  States  ->  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  A  C_  ( _|_ `  B ) )  -> 
( S `  ( A  vH  B ) )  =  ( ( S `
 A )  +  ( S `  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   [,]cicc 12178   ~Hchil 27776   CHcch 27786   _|_cort 27787    vH chj 27790   Statescst 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-sh 28064  df-ch 28078  df-st 29070
This theorem is referenced by:  sto1i  29095  stlei  29099  stji1i  29101
  Copyright terms: Public domain W3C validator