![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem9 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 40280: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem9.1 | ⊢ (𝜑 → 𝑇 = ∅) |
stoweidlem9.2 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem9 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem9.1 | . . . 4 ⊢ (𝜑 → 𝑇 = ∅) | |
2 | mpteq1 4737 | . . . . 5 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1)) | |
3 | mpt0 6021 | . . . . 5 ⊢ (𝑡 ∈ ∅ ↦ 1) = ∅ | |
4 | 2, 3 | syl6eq 2672 | . . . 4 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
6 | stoweidlem9.2 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) | |
7 | 5, 6 | eqeltrrd 2702 | . 2 ⊢ (𝜑 → ∅ ∈ 𝐴) |
8 | rzal 4073 | . . 3 ⊢ (𝑇 = ∅ → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) | |
9 | 1, 8 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
10 | fveq1 6190 | . . . . . . 7 ⊢ (𝑔 = ∅ → (𝑔‘𝑡) = (∅‘𝑡)) | |
11 | 10 | oveq1d 6665 | . . . . . 6 ⊢ (𝑔 = ∅ → ((𝑔‘𝑡) − (𝐹‘𝑡)) = ((∅‘𝑡) − (𝐹‘𝑡))) |
12 | 11 | fveq2d 6195 | . . . . 5 ⊢ (𝑔 = ∅ → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) = (abs‘((∅‘𝑡) − (𝐹‘𝑡)))) |
13 | 12 | breq1d 4663 | . . . 4 ⊢ (𝑔 = ∅ → ((abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
14 | 13 | ralbidv 2986 | . . 3 ⊢ (𝑔 = ∅ → (∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
15 | 14 | rspcev 3309 | . 2 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
16 | 7, 9, 15 | syl2anc 693 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∅c0 3915 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 1c1 9937 < clt 10074 − cmin 10266 abscabs 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 |
This theorem is referenced by: stoweid 40280 |
Copyright terms: Public domain | W3C validator |