Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Visualization version   GIF version

Theorem stoweid 40280
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1 𝑡𝐹
stoweid.2 𝑡𝜑
stoweid.3 𝐾 = (topGen‘ran (,))
stoweid.4 (𝜑𝐽 ∈ Comp)
stoweid.5 𝑇 = 𝐽
stoweid.6 𝐶 = (𝐽 Cn 𝐾)
stoweid.7 (𝜑𝐴𝐶)
stoweid.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweid.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweid.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweid.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
stoweid.12 (𝜑𝐹𝐶)
stoweid.13 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweid (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   ,𝐸,𝑟,𝑥   ,𝐹,𝑟,𝑥   𝑇,,𝑟,𝑥   𝜑,,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,,𝑟)   𝐹(𝑡)   𝐽(𝑥,𝑔,)   𝐾(𝑥,𝑓,𝑔,,𝑟)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑇 = ∅) → 𝑇 = ∅)
2 stoweid.10 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴)
4 1re 10039 . . . . . 6 1 ∈ ℝ
5 id 22 . . . . . . . . 9 (𝑥 = 1 → 𝑥 = 1)
65mpteq2dv 4745 . . . . . . . 8 (𝑥 = 1 → (𝑡𝑇𝑥) = (𝑡𝑇 ↦ 1))
76eleq1d 2686 . . . . . . 7 (𝑥 = 1 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇 ↦ 1) ∈ 𝐴))
87rspccv 3306 . . . . . 6 (∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴 → (1 ∈ ℝ → (𝑡𝑇 ↦ 1) ∈ 𝐴))
93, 4, 8mpisyl 21 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
109adantr 481 . . . 4 ((𝜑𝑇 = ∅) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
111, 10stoweidlem9 40226 . . 3 ((𝜑𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
12 stoweid.1 . . . 4 𝑡𝐹
13 nfv 1843 . . . . 5 𝑓𝜑
14 nfv 1843 . . . . 5 𝑓 ¬ 𝑇 = ∅
1513, 14nfan 1828 . . . 4 𝑓(𝜑 ∧ ¬ 𝑇 = ∅)
16 stoweid.2 . . . . 5 𝑡𝜑
17 nfv 1843 . . . . 5 𝑡 ¬ 𝑇 = ∅
1816, 17nfan 1828 . . . 4 𝑡(𝜑 ∧ ¬ 𝑇 = ∅)
19 eqid 2622 . . . 4 (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
20 stoweid.3 . . . 4 𝐾 = (topGen‘ran (,))
21 stoweid.5 . . . 4 𝑇 = 𝐽
22 stoweid.4 . . . . 5 (𝜑𝐽 ∈ Comp)
2322adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐽 ∈ Comp)
24 stoweid.6 . . . 4 𝐶 = (𝐽 Cn 𝐾)
25 stoweid.7 . . . . 5 (𝜑𝐴𝐶)
2625adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐴𝐶)
27 stoweid.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28273adant1r 1319 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29 stoweid.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
30293adant1r 1319 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
312adantlr 751 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32 stoweid.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
3332adantlr 751 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
34 stoweid.12 . . . . 5 (𝜑𝐹𝐶)
3534adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐹𝐶)
36 stoweid.13 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
37 4re 11097 . . . . . . . . 9 4 ∈ ℝ
38 4pos 11116 . . . . . . . . 9 0 < 4
3937, 38elrpii 11835 . . . . . . . 8 4 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
4140rpreccld 11882 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ+)
4236, 41ifcld 4131 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
4342adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
44 neqne 2802 . . . . 5 𝑇 = ∅ → 𝑇 ≠ ∅)
4544adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝑇 ≠ ∅)
4636rpred 11872 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
47 4ne0 11117 . . . . . . . . 9 4 ≠ 0
4837, 47rereccli 10790 . . . . . . . 8 (1 / 4) ∈ ℝ
4948a1i 11 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ)
5046, 49ifcld 4131 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
51 3re 11094 . . . . . . . 8 3 ∈ ℝ
52 3ne0 11115 . . . . . . . 8 3 ≠ 0
5351, 52rereccli 10790 . . . . . . 7 (1 / 3) ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → (1 / 3) ∈ ℝ)
5536rpxrd 11873 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
5641rpxrd 11873 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ*)
57 xrmin2 12009 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
5855, 56, 57syl2anc 693 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
59 3lt4 11197 . . . . . . . 8 3 < 4
60 3pos 11114 . . . . . . . . 9 0 < 3
6151, 37, 60, 38ltrecii 10940 . . . . . . . 8 (3 < 4 ↔ (1 / 4) < (1 / 3))
6259, 61mpbi 220 . . . . . . 7 (1 / 4) < (1 / 3)
6362a1i 11 . . . . . 6 (𝜑 → (1 / 4) < (1 / 3))
6450, 49, 54, 58, 63lelttrd 10195 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6564adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 40279 . . 3 ((𝜑 ∧ ¬ 𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
6711, 66pm2.61dan 832 . 2 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
68 nfv 1843 . . . . 5 𝑡 𝑓𝐴
6916, 68nfan 1828 . . . 4 𝑡(𝜑𝑓𝐴)
70 xrmin1 12008 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7155, 56, 70syl2anc 693 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7271ad2antrr 762 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7325ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐴𝐶)
74 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐴)
7573, 74sseldd 3604 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐶)
7620, 21, 24, 75fcnre 39184 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
77 simpr 477 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
7876, 77jca 554 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓:𝑇⟶ℝ ∧ 𝑡𝑇))
79 ffvelrn 6357 . . . . . . . . 9 ((𝑓:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
80 recn 10026 . . . . . . . . 9 ((𝑓𝑡) ∈ ℝ → (𝑓𝑡) ∈ ℂ)
8178, 79, 803syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℂ)
8234ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹𝐶)
8320, 21, 24, 82fcnre 39184 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
8483, 77jca 554 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹:𝑇⟶ℝ ∧ 𝑡𝑇))
85 ffvelrn 6357 . . . . . . . . 9 ((𝐹:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
86 recn 10026 . . . . . . . . 9 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
8881, 87subcld 10392 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((𝑓𝑡) − (𝐹𝑡)) ∈ ℂ)
8988abscld 14175 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ)
904, 37, 473pm3.2i 1239 . . . . . . . . 9 (1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0)
91 redivcl 10744 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
9290, 91mp1i 13 . . . . . . . 8 (𝜑 → (1 / 4) ∈ ℝ)
9346, 92ifcld 4131 . . . . . . 7 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9493ad2antrr 762 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9546ad2antrr 762 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
96 ltletr 10129 . . . . . 6 (((abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9789, 94, 95, 96syl3anc 1326 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9872, 97mpan2d 710 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9969, 98ralimdaa 2958 . . 3 ((𝜑𝑓𝐴) → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10099reximdva 3017 . 2 (𝜑 → (∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10167, 100mpd 15 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915  ifcif 4086   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  3c3 11071  4c4 11072  +crp 11832  (,)cioo 12175  abscabs 13974  topGenctg 16098   Cn ccn 21028  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stowei  40281
  Copyright terms: Public domain W3C validator