Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem9 Structured version   Visualization version   Unicode version

Theorem stoweidlem9 40226
Description: Lemma for stoweid 40280: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem9.1  |-  ( ph  ->  T  =  (/) )
stoweidlem9.2  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
Assertion
Ref Expression
stoweidlem9  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    A, g    g, E    g, F    t,
g, T
Allowed substitution hints:    ph( t, g)    A( t)    E( t)    F( t)

Proof of Theorem stoweidlem9
StepHypRef Expression
1 stoweidlem9.1 . . . 4  |-  ( ph  ->  T  =  (/) )
2 mpteq1 4737 . . . . 5  |-  ( T  =  (/)  ->  ( t  e.  T  |->  1 )  =  ( t  e.  (/)  |->  1 ) )
3 mpt0 6021 . . . . 5  |-  ( t  e.  (/)  |->  1 )  =  (/)
42, 3syl6eq 2672 . . . 4  |-  ( T  =  (/)  ->  ( t  e.  T  |->  1 )  =  (/) )
51, 4syl 17 . . 3  |-  ( ph  ->  ( t  e.  T  |->  1 )  =  (/) )
6 stoweidlem9.2 . . 3  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
75, 6eqeltrrd 2702 . 2  |-  ( ph  -> 
(/)  e.  A )
8 rzal 4073 . . 3  |-  ( T  =  (/)  ->  A. t  e.  T  ( abs `  ( ( (/) `  t
)  -  ( F `
 t ) ) )  <  E )
91, 8syl 17 . 2  |-  ( ph  ->  A. t  e.  T  ( abs `  ( (
(/) `  t )  -  ( F `  t ) ) )  <  E )
10 fveq1 6190 . . . . . . 7  |-  ( g  =  (/)  ->  ( g `
 t )  =  ( (/) `  t ) )
1110oveq1d 6665 . . . . . 6  |-  ( g  =  (/)  ->  ( ( g `  t )  -  ( F `  t ) )  =  ( ( (/) `  t
)  -  ( F `
 t ) ) )
1211fveq2d 6195 . . . . 5  |-  ( g  =  (/)  ->  ( abs `  ( ( g `  t )  -  ( F `  t )
) )  =  ( abs `  ( (
(/) `  t )  -  ( F `  t ) ) ) )
1312breq1d 4663 . . . 4  |-  ( g  =  (/)  ->  ( ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  E  <->  ( abs `  ( ( (/) `  t
)  -  ( F `
 t ) ) )  <  E ) )
1413ralbidv 2986 . . 3  |-  ( g  =  (/)  ->  ( A. t  e.  T  ( abs `  ( ( g `
 t )  -  ( F `  t ) ) )  <  E  <->  A. t  e.  T  ( abs `  ( (
(/) `  t )  -  ( F `  t ) ) )  <  E ) )
1514rspcev 3309 . 2  |-  ( (
(/)  e.  A  /\  A. t  e.  T  ( abs `  ( (
(/) `  t )  -  ( F `  t ) ) )  <  E )  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  E )
167, 9, 15syl2anc 693 1  |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937    < clt 10074    - cmin 10266   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653
This theorem is referenced by:  stoweid  40280
  Copyright terms: Public domain W3C validator