MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgredgd Structured version   Visualization version   GIF version

Theorem subgruhgredgd 26176
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
subgruhgredgd.v 𝑉 = (Vtx‘𝑆)
subgruhgredgd.i 𝐼 = (iEdg‘𝑆)
subgruhgredgd.g (𝜑𝐺 ∈ UHGraph )
subgruhgredgd.s (𝜑𝑆 SubGraph 𝐺)
subgruhgredgd.x (𝜑𝑋 ∈ dom 𝐼)
Assertion
Ref Expression
subgruhgredgd (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))

Proof of Theorem subgruhgredgd
StepHypRef Expression
1 subgruhgredgd.s . . 3 (𝜑𝑆 SubGraph 𝐺)
2 subgruhgredgd.v . . . 4 𝑉 = (Vtx‘𝑆)
3 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
4 subgruhgredgd.i . . . 4 𝐼 = (iEdg‘𝑆)
5 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2622 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
72, 3, 4, 5, 6subgrprop2 26166 . . 3 (𝑆 SubGraph 𝐺 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
81, 7syl 17 . 2 (𝜑 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
9 simpr3 1069 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
10 subgruhgredgd.g . . . . . . . . 9 (𝜑𝐺 ∈ UHGraph )
11 subgruhgrfun 26174 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
1210, 1, 11syl2anc 693 . . . . . . . 8 (𝜑 → Fun (iEdg‘𝑆))
13 subgruhgredgd.x . . . . . . . . 9 (𝜑𝑋 ∈ dom 𝐼)
144dmeqi 5325 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
1513, 14syl6eleq 2711 . . . . . . . 8 (𝜑𝑋 ∈ dom (iEdg‘𝑆))
1612, 15jca 554 . . . . . . 7 (𝜑 → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
1716adantr 481 . . . . . 6 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
184fveq1i 6192 . . . . . . 7 (𝐼𝑋) = ((iEdg‘𝑆)‘𝑋)
19 fvelrn 6352 . . . . . . 7 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑋) ∈ ran (iEdg‘𝑆))
2018, 19syl5eqel 2705 . . . . . 6 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
2117, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
22 edgval 25941 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
2321, 22syl6eleqr 2712 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (Edg‘𝑆))
249, 23sseldd 3604 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ 𝒫 𝑉)
255uhgrfun 25961 . . . . . . 7 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2610, 25syl 17 . . . . . 6 (𝜑 → Fun (iEdg‘𝐺))
2726adantr 481 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → Fun (iEdg‘𝐺))
28 simpr2 1068 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐼 ⊆ (iEdg‘𝐺))
2913adantr 481 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom 𝐼)
30 funssfv 6209 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
3130eqcomd 2628 . . . . 5 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3227, 28, 29, 31syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3310adantr 481 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐺 ∈ UHGraph )
34 funfn 5918 . . . . . . 7 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3526, 34sylib 208 . . . . . 6 (𝜑 → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3635adantr 481 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
37 subgreldmiedg 26175 . . . . . . 7 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
381, 15, 37syl2anc 693 . . . . . 6 (𝜑𝑋 ∈ dom (iEdg‘𝐺))
3938adantr 481 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom (iEdg‘𝐺))
405uhgrn0 25962 . . . . 5 ((𝐺 ∈ UHGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4133, 36, 39, 40syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4232, 41eqnetrd 2861 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ≠ ∅)
43 eldifsn 4317 . . 3 ((𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ (𝐼𝑋) ≠ ∅))
4424, 42, 43sylanbrc 698 . 2 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
458, 44mpdan 702 1 (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by:  subumgredg2  26177  subuhgr  26178  subupgr  26179
  Copyright terms: Public domain W3C validator