Proof of Theorem subgruhgredgd
Step | Hyp | Ref
| Expression |
1 | | subgruhgredgd.s |
. . 3
 SubGraph   |
2 | | subgruhgredgd.v |
. . . 4
Vtx   |
3 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
4 | | subgruhgredgd.i |
. . . 4
iEdg   |
5 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
6 | | eqid 2622 |
. . . 4
Edg  Edg   |
7 | 2, 3, 4, 5, 6 | subgrprop2 26166 |
. . 3
 SubGraph  Vtx  iEdg 
Edg 
    |
8 | 1, 7 | syl 17 |
. 2
  Vtx  iEdg  Edg      |
9 | | simpr3 1069 |
. . . 4
 
 Vtx 
iEdg  Edg     Edg     |
10 | | subgruhgredgd.g |
. . . . . . . . 9
 UHGraph
 |
11 | | subgruhgrfun 26174 |
. . . . . . . . 9
  UHGraph
SubGraph 
iEdg    |
12 | 10, 1, 11 | syl2anc 693 |
. . . . . . . 8
 iEdg    |
13 | | subgruhgredgd.x |
. . . . . . . . 9
   |
14 | 4 | dmeqi 5325 |
. . . . . . . . 9
iEdg   |
15 | 13, 14 | syl6eleq 2711 |
. . . . . . . 8
 iEdg    |
16 | 12, 15 | jca 554 |
. . . . . . 7
  iEdg  iEdg     |
17 | 16 | adantr 481 |
. . . . . 6
 
 Vtx 
iEdg  Edg     
iEdg 
iEdg     |
18 | 4 | fveq1i 6192 |
. . . . . . 7
     iEdg      |
19 | | fvelrn 6352 |
. . . . . . 7
  iEdg 
iEdg  
 iEdg     iEdg    |
20 | 18, 19 | syl5eqel 2705 |
. . . . . 6
  iEdg 
iEdg  
    iEdg    |
21 | 17, 20 | syl 17 |
. . . . 5
 
 Vtx 
iEdg  Edg         iEdg    |
22 | | edgval 25941 |
. . . . 5
Edg  iEdg   |
23 | 21, 22 | syl6eleqr 2712 |
. . . 4
 
 Vtx 
iEdg  Edg         Edg    |
24 | 9, 23 | sseldd 3604 |
. . 3
 
 Vtx 
iEdg  Edg            |
25 | 5 | uhgrfun 25961 |
. . . . . . 7
 UHGraph
iEdg    |
26 | 10, 25 | syl 17 |
. . . . . 6
 iEdg    |
27 | 26 | adantr 481 |
. . . . 5
 
 Vtx 
iEdg  Edg     iEdg    |
28 | | simpr2 1068 |
. . . . 5
 
 Vtx 
iEdg  Edg     iEdg    |
29 | 13 | adantr 481 |
. . . . 5
 
 Vtx 
iEdg  Edg    
  |
30 | | funssfv 6209 |
. . . . . 6
  iEdg 
iEdg    iEdg           |
31 | 30 | eqcomd 2628 |
. . . . 5
  iEdg 
iEdg        iEdg       |
32 | 27, 28, 29, 31 | syl3anc 1326 |
. . . 4
 
 Vtx 
iEdg  Edg          iEdg       |
33 | 10 | adantr 481 |
. . . . 5
 
 Vtx 
iEdg  Edg    
UHGraph  |
34 | | funfn 5918 |
. . . . . . 7
 iEdg  iEdg  iEdg    |
35 | 26, 34 | sylib 208 |
. . . . . 6
 iEdg  iEdg    |
36 | 35 | adantr 481 |
. . . . 5
 
 Vtx 
iEdg  Edg     iEdg  iEdg    |
37 | | subgreldmiedg 26175 |
. . . . . . 7
  SubGraph
iEdg  
iEdg    |
38 | 1, 15, 37 | syl2anc 693 |
. . . . . 6
 iEdg    |
39 | 38 | adantr 481 |
. . . . 5
 
 Vtx 
iEdg  Edg    
iEdg    |
40 | 5 | uhgrn0 25962 |
. . . . 5
  UHGraph
iEdg  iEdg 
iEdg    iEdg       |
41 | 33, 36, 39, 40 | syl3anc 1326 |
. . . 4
 
 Vtx 
iEdg  Edg      iEdg       |
42 | 32, 41 | eqnetrd 2861 |
. . 3
 
 Vtx 
iEdg  Edg           |
43 | | eldifsn 4317 |
. . 3
         
             |
44 | 24, 42, 43 | sylanbrc 698 |
. 2
 
 Vtx 
iEdg  Edg                |
45 | 8, 44 | mpdan 702 |
1
            |