Proof of Theorem subumgredg2
| Step | Hyp | Ref
| Expression |
| 1 | | subumgredg2.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
| 2 | | subumgredg2.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝑆) |
| 3 | | umgruhgr 25999 |
. . . . 5
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph
) |
| 4 | 3 | 3ad2ant2 1083 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph ) |
| 5 | | simp1 1061 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺) |
| 6 | | simp3 1063 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) |
| 7 | 1, 2, 4, 5, 6 | subgruhgredgd 26176 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) |
| 8 | | eqid 2622 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 9 | 8 | uhgrfun 25961 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
| 10 | 3, 9 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ UMGraph → Fun
(iEdg‘𝐺)) |
| 11 | 10 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺)) |
| 12 | | eqid 2622 |
. . . . . . . . 9
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 13 | | eqid 2622 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 14 | | eqid 2622 |
. . . . . . . . 9
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
| 15 | 12, 13, 2, 8, 14 | subgrprop2 26166 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 16 | 15 | simp2d 1074 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → 𝐼 ⊆ (iEdg‘𝐺)) |
| 17 | 16 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺)) |
| 18 | | funssfv 6209 |
. . . . . . 7
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) |
| 19 | 18 | eqcomd 2628 |
. . . . . 6
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
| 20 | 11, 17, 6, 19 | syl3anc 1326 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
| 21 | 20 | fveq2d 6195 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼‘𝑋)) = (#‘((iEdg‘𝐺)‘𝑋))) |
| 22 | | simp2 1062 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph ) |
| 23 | 2 | dmeqi 5325 |
. . . . . . . . 9
⊢ dom 𝐼 = dom (iEdg‘𝑆) |
| 24 | 23 | eleq2i 2693 |
. . . . . . . 8
⊢ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom (iEdg‘𝑆)) |
| 25 | | subgreldmiedg 26175 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| 26 | 25 | ex 450 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 27 | 24, 26 | syl5bi 232 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 28 | 27 | a1d 25 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺)))) |
| 29 | 28 | 3imp 1256 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| 30 | 13, 8 | umgredg2 25995 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) →
(#‘((iEdg‘𝐺)‘𝑋)) = 2) |
| 31 | 22, 29, 30 | syl2anc 693 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘((iEdg‘𝐺)‘𝑋)) = 2) |
| 32 | 21, 31 | eqtrd 2656 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼‘𝑋)) = 2) |
| 33 | | fveq2 6191 |
. . . . 5
⊢ (𝑒 = (𝐼‘𝑋) → (#‘𝑒) = (#‘(𝐼‘𝑋))) |
| 34 | 33 | eqeq1d 2624 |
. . . 4
⊢ (𝑒 = (𝐼‘𝑋) → ((#‘𝑒) = 2 ↔ (#‘(𝐼‘𝑋)) = 2)) |
| 35 | 34 | elrab 3363 |
. . 3
⊢ ((𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑒) = 2} ↔ ((𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐼‘𝑋)) = 2)) |
| 36 | 7, 32, 35 | sylanbrc 698 |
. 2
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑒) = 2}) |
| 37 | | prprrab 13255 |
. 2
⊢ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(#‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (#‘𝑒) = 2} |
| 38 | 36, 37 | syl6eleq 2711 |
1
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (#‘𝑒) = 2}) |