MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Structured version   Visualization version   GIF version

Theorem supexpr 9876
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 9874 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
2 ltrelpr 9820 . . . . . . . . 9 <P ⊆ (P × P)
32brel 5168 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
43simpld 475 . . . . . . 7 (𝑦<P 𝑥𝑦P)
54ralimi 2952 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
6 dfss3 3592 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
75, 6sylibr 224 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
87rexlimivw 3029 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
98adantl 482 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
10 suplem2pr 9875 . . . . . 6 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
1110simpld 475 . . . . 5 (𝐴P → (𝑦𝐴 → ¬ 𝐴<P 𝑦))
1211ralrimiv 2965 . . . 4 (𝐴P → ∀𝑦𝐴 ¬ 𝐴<P 𝑦)
1310simprd 479 . . . . 5 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1413ralrimivw 2967 . . . 4 (𝐴P → ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
1512, 14jca 554 . . 3 (𝐴P → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
169, 15syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
17 breq1 4656 . . . . . 6 (𝑥 = 𝐴 → (𝑥<P 𝑦 𝐴<P 𝑦))
1817notbid 308 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥<P 𝑦 ↔ ¬ 𝐴<P 𝑦))
1918ralbidv 2986 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ 𝐴<P 𝑦))
20 breq2 4657 . . . . . 6 (𝑥 = 𝐴 → (𝑦<P 𝑥𝑦<P 𝐴))
2120imbi1d 331 . . . . 5 (𝑥 = 𝐴 → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2221ralbidv 2986 . . . 4 (𝑥 = 𝐴 → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
2319, 22anbi12d 747 . . 3 (𝑥 = 𝐴 → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))))
2423rspcev 3309 . 2 (( 𝐴P ∧ (∀𝑦𝐴 ¬ 𝐴<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
251, 16, 24syl2anc 693 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   cuni 4436   class class class wbr 4653  Pcnp 9681  <P cltp 9685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-ltnq 9740  df-np 9803  df-ltp 9807
This theorem is referenced by:  supsrlem  9932
  Copyright terms: Public domain W3C validator