| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suplub2 | Structured version Visualization version Unicode version | ||
| Description: Bidirectional form of suplub 8366. (Contributed by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| supmo.1 |
|
| supcl.2 |
|
| suplub2.3 |
|
| Ref | Expression |
|---|---|
| suplub2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 |
. . . 4
| |
| 2 | supcl.2 |
. . . 4
| |
| 3 | 1, 2 | suplub 8366 |
. . 3
|
| 4 | 3 | expdimp 453 |
. 2
|
| 5 | breq2 4657 |
. . . 4
| |
| 6 | 5 | cbvrexv 3172 |
. . 3
|
| 7 | breq2 4657 |
. . . . . . 7
| |
| 8 | 7 | biimprd 238 |
. . . . . 6
|
| 9 | 8 | a1i 11 |
. . . . 5
|
| 10 | 1 | ad2antrr 762 |
. . . . . . 7
|
| 11 | simplr 792 |
. . . . . . 7
| |
| 12 | suplub2.3 |
. . . . . . . . 9
| |
| 13 | 12 | adantr 481 |
. . . . . . . 8
|
| 14 | 13 | sselda 3603 |
. . . . . . 7
|
| 15 | 1, 2 | supcl 8364 |
. . . . . . . 8
|
| 16 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 17 | sotr 5057 |
. . . . . . 7
| |
| 18 | 10, 11, 14, 16, 17 | syl13anc 1328 |
. . . . . 6
|
| 19 | 18 | expcomd 454 |
. . . . 5
|
| 20 | 1, 2 | supub 8365 |
. . . . . . . 8
|
| 21 | 20 | adantr 481 |
. . . . . . 7
|
| 22 | 21 | imp 445 |
. . . . . 6
|
| 23 | sotric 5061 |
. . . . . . . 8
| |
| 24 | 10, 16, 14, 23 | syl12anc 1324 |
. . . . . . 7
|
| 25 | 24 | con2bid 344 |
. . . . . 6
|
| 26 | 22, 25 | mpbird 247 |
. . . . 5
|
| 27 | 9, 19, 26 | mpjaod 396 |
. . . 4
|
| 28 | 27 | rexlimdva 3031 |
. . 3
|
| 29 | 6, 28 | syl5bi 232 |
. 2
|
| 30 | 4, 29 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: infglbb 8397 suprlub 10987 supxrlub 12155 |
| Copyright terms: Public domain | W3C validator |