MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplub2 Structured version   Visualization version   Unicode version

Theorem suplub2 8367
Description: Bidirectional form of suplub 8366. (Contributed by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
supmo.1  |-  ( ph  ->  R  Or  A )
supcl.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
suplub2.3  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
suplub2  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  <->  E. z  e.  B  C R z ) )
Distinct variable groups:    x, y,
z, A    x, R, y, z    x, B, y, z    z, C
Allowed substitution hints:    ph( x, y, z)    C( x, y)

Proof of Theorem suplub2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 supmo.1 . . . 4  |-  ( ph  ->  R  Or  A )
2 supcl.2 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
31, 2suplub 8366 . . 3  |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R )
)  ->  E. z  e.  B  C R
z ) )
43expdimp 453 . 2  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  ->  E. z  e.  B  C R
z ) )
5 breq2 4657 . . . 4  |-  ( z  =  w  ->  ( C R z  <->  C R w ) )
65cbvrexv 3172 . . 3  |-  ( E. z  e.  B  C R z  <->  E. w  e.  B  C R w )
7 breq2 4657 . . . . . . 7  |-  ( sup ( B ,  A ,  R )  =  w  ->  ( C R sup ( B ,  A ,  R )  <->  C R w ) )
87biimprd 238 . . . . . 6  |-  ( sup ( B ,  A ,  R )  =  w  ->  ( C R w  ->  C R sup ( B ,  A ,  R ) ) )
98a1i 11 . . . . 5  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  ( sup ( B ,  A ,  R )  =  w  ->  ( C R w  ->  C R sup ( B ,  A ,  R ) ) ) )
101ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  R  Or  A )
11 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  C  e.  A )
12 suplub2.3 . . . . . . . . 9  |-  ( ph  ->  B  C_  A )
1312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  e.  A )  ->  B  C_  A )
1413sselda 3603 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  w  e.  A )
151, 2supcl 8364 . . . . . . . 8  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
1615ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  sup ( B ,  A ,  R )  e.  A
)
17 sotr 5057 . . . . . . 7  |-  ( ( R  Or  A  /\  ( C  e.  A  /\  w  e.  A  /\  sup ( B ,  A ,  R )  e.  A ) )  -> 
( ( C R w  /\  w R sup ( B ,  A ,  R )
)  ->  C R sup ( B ,  A ,  R ) ) )
1810, 11, 14, 16, 17syl13anc 1328 . . . . . 6  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  (
( C R w  /\  w R sup ( B ,  A ,  R ) )  ->  C R sup ( B ,  A ,  R
) ) )
1918expcomd 454 . . . . 5  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  (
w R sup ( B ,  A ,  R )  ->  ( C R w  ->  C R sup ( B ,  A ,  R )
) ) )
201, 2supub 8365 . . . . . . . 8  |-  ( ph  ->  ( w  e.  B  ->  -.  sup ( B ,  A ,  R
) R w ) )
2120adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  e.  A )  ->  (
w  e.  B  ->  -.  sup ( B ,  A ,  R ) R w ) )
2221imp 445 . . . . . 6  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  -.  sup ( B ,  A ,  R ) R w )
23 sotric 5061 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( sup ( B ,  A ,  R )  e.  A  /\  w  e.  A ) )  -> 
( sup ( B ,  A ,  R
) R w  <->  -.  ( sup ( B ,  A ,  R )  =  w  \/  w R sup ( B ,  A ,  R ) ) ) )
2410, 16, 14, 23syl12anc 1324 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  ( sup ( B ,  A ,  R ) R w  <->  -.  ( sup ( B ,  A ,  R
)  =  w  \/  w R sup ( B ,  A ,  R ) ) ) )
2524con2bid 344 . . . . . 6  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  (
( sup ( B ,  A ,  R
)  =  w  \/  w R sup ( B ,  A ,  R ) )  <->  -.  sup ( B ,  A ,  R ) R w ) )
2622, 25mpbird 247 . . . . 5  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  ( sup ( B ,  A ,  R )  =  w  \/  w R sup ( B ,  A ,  R ) ) )
279, 19, 26mpjaod 396 . . . 4  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  ( C R w  ->  C R sup ( B ,  A ,  R )
) )
2827rexlimdva 3031 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  ( E. w  e.  B  C R w  ->  C R sup ( B ,  A ,  R )
) )
296, 28syl5bi 232 . 2  |-  ( (
ph  /\  C  e.  A )  ->  ( E. z  e.  B  C R z  ->  C R sup ( B ,  A ,  R )
) )
304, 29impbid 202 1  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  <->  E. z  e.  B  C R z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    Or wor 5034   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-iota 5851  df-riota 6611  df-sup 8348
This theorem is referenced by:  infglbb  8397  suprlub  10987  supxrlub  12155
  Copyright terms: Public domain W3C validator