MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppeqfsuppbi Structured version   Visualization version   GIF version

Theorem suppeqfsuppbi 8289
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
suppeqfsuppbi (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem suppeqfsuppbi
StepHypRef Expression
1 simprlr 803 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → Fun 𝐹)
2 simprll 802 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝐹𝑈)
3 simpl 473 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝑍 ∈ V)
4 funisfsupp 8280 . . . . . 6 ((Fun 𝐹𝐹𝑈𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
51, 2, 3, 4syl3anc 1326 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
65adantr 481 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
7 simpr 477 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → Fun 𝐺)
87adantr 481 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → Fun 𝐺)
9 simpl 473 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → 𝐺𝑉)
109adantr 481 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝐺𝑉)
11 simpr 477 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
12 funisfsupp 8280 . . . . . . . . 9 ((Fun 𝐺𝐺𝑉𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
138, 10, 11, 12syl3anc 1326 . . . . . . . 8 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
1413ex 450 . . . . . . 7 ((𝐺𝑉 ∧ Fun 𝐺) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1514adantl 482 . . . . . 6 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1615impcom 446 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
17 eleq1 2689 . . . . . 6 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐺 supp 𝑍) ∈ Fin))
1817bicomd 213 . . . . 5 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐺 supp 𝑍) ∈ Fin ↔ (𝐹 supp 𝑍) ∈ Fin))
1916, 18sylan9bb 736 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐺 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
206, 19bitr4d 271 . . 3 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
2120exp31 630 . 2 (𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
22 relfsupp 8277 . . . . 5 Rel finSupp
2322brrelex2i 5159 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
2422brrelex2i 5159 . . . 4 (𝐺 finSupp 𝑍𝑍 ∈ V)
2523, 24pm5.21ni 367 . . 3 𝑍 ∈ V → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
26252a1d 26 . 2 𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
2721, 26pm2.61i 176 1 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  Fun wfun 5882  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-fsupp 8276
This theorem is referenced by:  cantnfrescl  8573
  Copyright terms: Public domain W3C validator