![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funisfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
Ref | Expression |
---|---|
funisfsupp | ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsupp 8279 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
2 | 1 | 3adant1 1079 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
3 | ibar 525 | . . . 4 ⊢ (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
4 | 3 | bicomd 213 | . . 3 ⊢ (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
5 | 4 | 3ad2ant1 1082 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
6 | 2, 5 | bitrd 268 | 1 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 class class class wbr 4653 Fun wfun 5882 (class class class)co 6650 supp csupp 7295 Fincfn 7955 finSupp cfsupp 8275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-fsupp 8276 |
This theorem is referenced by: suppeqfsuppbi 8289 suppssfifsupp 8290 fsuppunbi 8296 0fsupp 8297 snopfsupp 8298 fsuppres 8300 resfsupp 8302 frnfsuppbi 8304 fsuppco 8307 sniffsupp 8315 cantnfp1lem1 8575 mptnn0fsupp 12797 dprdfadd 18419 lcomfsupp 18903 mplsubglem2 19436 ltbwe 19472 frlmbas 20099 frlmphllem 20119 frlmsslsp 20135 pmatcollpw2lem 20582 rrxmval 23188 eulerpartgbij 30434 pwfi2f1o 37666 fidmfisupp 39390 lcoc0 42211 |
Copyright terms: Public domain | W3C validator |