MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppeqfsuppbi Structured version   Visualization version   Unicode version

Theorem suppeqfsuppbi 8289
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
suppeqfsuppbi  |-  ( ( ( F  e.  U  /\  Fun  F )  /\  ( G  e.  V  /\  Fun  G ) )  ->  ( ( F supp 
Z )  =  ( G supp  Z )  -> 
( F finSupp  Z  <->  G finSupp  Z ) ) )

Proof of Theorem suppeqfsuppbi
StepHypRef Expression
1 simprlr 803 . . . . . 6  |-  ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  ->  Fun  F )
2 simprll 802 . . . . . 6  |-  ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  ->  F  e.  U )
3 simpl 473 . . . . . 6  |-  ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  ->  Z  e.  _V )
4 funisfsupp 8280 . . . . . 6  |-  ( ( Fun  F  /\  F  e.  U  /\  Z  e. 
_V )  ->  ( F finSupp  Z  <->  ( F supp  Z
)  e.  Fin )
)
51, 2, 3, 4syl3anc 1326 . . . . 5  |-  ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  -> 
( F finSupp  Z  <->  ( F supp  Z )  e.  Fin )
)
65adantr 481 . . . 4  |-  ( ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  /\  ( F supp  Z )  =  ( G supp  Z
) )  ->  ( F finSupp  Z  <->  ( F supp  Z
)  e.  Fin )
)
7 simpr 477 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  Fun  G )  ->  Fun  G )
87adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  Z  e.  _V )  ->  Fun  G )
9 simpl 473 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  Fun  G )  ->  G  e.  V )
109adantr 481 . . . . . . . . 9  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  Z  e.  _V )  ->  G  e.  V )
11 simpr 477 . . . . . . . . 9  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  Z  e.  _V )  ->  Z  e.  _V )
12 funisfsupp 8280 . . . . . . . . 9  |-  ( ( Fun  G  /\  G  e.  V  /\  Z  e. 
_V )  ->  ( G finSupp  Z  <->  ( G supp  Z
)  e.  Fin )
)
138, 10, 11, 12syl3anc 1326 . . . . . . . 8  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  Z  e.  _V )  ->  ( G finSupp  Z  <->  ( G supp  Z )  e.  Fin )
)
1413ex 450 . . . . . . 7  |-  ( ( G  e.  V  /\  Fun  G )  ->  ( Z  e.  _V  ->  ( G finSupp  Z  <->  ( G supp  Z
)  e.  Fin )
) )
1514adantl 482 . . . . . 6  |-  ( ( ( F  e.  U  /\  Fun  F )  /\  ( G  e.  V  /\  Fun  G ) )  ->  ( Z  e. 
_V  ->  ( G finSupp  Z  <->  ( G supp  Z )  e. 
Fin ) ) )
1615impcom 446 . . . . 5  |-  ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  -> 
( G finSupp  Z  <->  ( G supp  Z )  e.  Fin )
)
17 eleq1 2689 . . . . . 6  |-  ( ( F supp  Z )  =  ( G supp  Z )  ->  ( ( F supp 
Z )  e.  Fin  <->  ( G supp  Z )  e.  Fin ) )
1817bicomd 213 . . . . 5  |-  ( ( F supp  Z )  =  ( G supp  Z )  ->  ( ( G supp 
Z )  e.  Fin  <->  ( F supp  Z )  e.  Fin ) )
1916, 18sylan9bb 736 . . . 4  |-  ( ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  /\  ( F supp  Z )  =  ( G supp  Z
) )  ->  ( G finSupp  Z  <->  ( F supp  Z
)  e.  Fin )
)
206, 19bitr4d 271 . . 3  |-  ( ( ( Z  e.  _V  /\  ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) ) )  /\  ( F supp  Z )  =  ( G supp  Z
) )  ->  ( F finSupp  Z  <->  G finSupp  Z ) )
2120exp31 630 . 2  |-  ( Z  e.  _V  ->  (
( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) )  ->  (
( F supp  Z )  =  ( G supp  Z
)  ->  ( F finSupp  Z  <-> 
G finSupp  Z ) ) ) )
22 relfsupp 8277 . . . . 5  |-  Rel finSupp
2322brrelex2i 5159 . . . 4  |-  ( F finSupp  Z  ->  Z  e.  _V )
2422brrelex2i 5159 . . . 4  |-  ( G finSupp  Z  ->  Z  e.  _V )
2523, 24pm5.21ni 367 . . 3  |-  ( -.  Z  e.  _V  ->  ( F finSupp  Z  <->  G finSupp  Z ) )
26252a1d 26 . 2  |-  ( -.  Z  e.  _V  ->  ( ( ( F  e.  U  /\  Fun  F
)  /\  ( G  e.  V  /\  Fun  G
) )  ->  (
( F supp  Z )  =  ( G supp  Z
)  ->  ( F finSupp  Z  <-> 
G finSupp  Z ) ) ) )
2721, 26pm2.61i 176 1  |-  ( ( ( F  e.  U  /\  Fun  F )  /\  ( G  e.  V  /\  Fun  G ) )  ->  ( ( F supp 
Z )  =  ( G supp  Z )  -> 
( F finSupp  Z  <->  G finSupp  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   Fun wfun 5882  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-fsupp 8276
This theorem is referenced by:  cantnfrescl  8573
  Copyright terms: Public domain W3C validator