Proof of Theorem suppeqfsuppbi
| Step | Hyp | Ref
| Expression |
| 1 | | simprlr 803 |
. . . . . 6
    

     |
| 2 | | simprll 802 |
. . . . . 6
    

  
  |
| 3 | | simpl 473 |
. . . . . 6
    

  
  |
| 4 | | funisfsupp 8280 |
. . . . . 6
 
  finSupp  supp     |
| 5 | 1, 2, 3, 4 | syl3anc 1326 |
. . . . 5
    

    finSupp
 supp     |
| 6 | 5 | adantr 481 |
. . . 4
     

   
supp   supp    finSupp  supp     |
| 7 | | simpr 477 |
. . . . . . . . . 10
     |
| 8 | 7 | adantr 481 |
. . . . . . . . 9
   
   |
| 9 | | simpl 473 |
. . . . . . . . . 10
     |
| 10 | 9 | adantr 481 |
. . . . . . . . 9
   
   |
| 11 | | simpr 477 |
. . . . . . . . 9
   
   |
| 12 | | funisfsupp 8280 |
. . . . . . . . 9
 
  finSupp  supp     |
| 13 | 8, 10, 11, 12 | syl3anc 1326 |
. . . . . . . 8
   
  finSupp
 supp     |
| 14 | 13 | ex 450 |
. . . . . . 7
   
 finSupp
 supp      |
| 15 | 14 | adantl 482 |
. . . . . 6
    
    finSupp  supp      |
| 16 | 15 | impcom 446 |
. . . . 5
    

    finSupp
 supp     |
| 17 | | eleq1 2689 |
. . . . . 6
  supp   supp    supp   supp     |
| 18 | 17 | bicomd 213 |
. . . . 5
  supp   supp    supp   supp     |
| 19 | 16, 18 | sylan9bb 736 |
. . . 4
     

   
supp   supp    finSupp  supp     |
| 20 | 6, 19 | bitr4d 271 |
. . 3
     

   
supp   supp    finSupp
finSupp    |
| 21 | 20 | exp31 630 |
. 2
    

    supp
  supp 
 finSupp finSupp      |
| 22 | | relfsupp 8277 |
. . . . 5
finSupp |
| 23 | 22 | brrelex2i 5159 |
. . . 4
 finSupp   |
| 24 | 22 | brrelex2i 5159 |
. . . 4
 finSupp   |
| 25 | 23, 24 | pm5.21ni 367 |
. . 3
  finSupp
finSupp    |
| 26 | 25 | 2a1d 26 |
. 2
    

    supp
  supp 
 finSupp finSupp      |
| 27 | 21, 26 | pm2.61i 176 |
1
    
    supp   supp   finSupp
finSupp     |