MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   GIF version

Theorem tfrlem10 7483
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 7487, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem10 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 6201 . . . . . 6 (𝐹‘recs(𝐹)) ∈ V
2 funsng 5937 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
31, 2mpan2 707 . . . . 5 (dom recs(𝐹) ∈ On → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
54tfrlem7 7479 . . . . 5 Fun recs(𝐹)
63, 5jctil 560 . . . 4 (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
71dmsnop 5609 . . . . . 6 dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} = {dom recs(𝐹)}
87ineq2i 3811 . . . . 5 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∩ {dom recs(𝐹)})
94tfrlem8 7480 . . . . . 6 Ord dom recs(𝐹)
10 orddisj 5762 . . . . . 6 (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅)
119, 10ax-mp 5 . . . . 5 (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅
128, 11eqtri 2644 . . . 4 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅
13 funun 5932 . . . 4 (((Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅) → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
146, 12, 13sylancl 694 . . 3 (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
157uneq2i 3764 . . . 4 (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
16 dmun 5331 . . . 4 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
17 df-suc 5729 . . . 4 suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
1815, 16, 173eqtr4i 2654 . . 3 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)
19 df-fn 5891 . . 3 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)))
2014, 18, 19sylanblrc 697 . 2 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
21 tfrlem.3 . . 3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
2221fneq1i 5985 . 2 (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
2320, 22sylibr 224 1 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177  cop 4183  dom cdm 5114  cres 5116  Ord word 5722  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem11  7484  tfrlem12  7485  tfrlem13  7486
  Copyright terms: Public domain W3C validator